Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Meng-Zhu, DENG Yong-Jing, LIU Shu-Juan, ZHAO Qiang. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192
Citation: WANG Meng-Zhu, DENG Yong-Jing, LIU Shu-Juan, ZHAO Qiang. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192

Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials

doi: 10.37188/CO.2020-0192
Funds:  Supported by National Funds for Distinguished Young Scientists (No. 61825503); National Natural Science Foundation of China (No. 61775101, No. 61805122)
More Information
  • Corresponding author: iamqzhao@njupt.edu.cn
  • Received Date: 23 Oct 2020
  • Rev Recd Date: 30 Nov 2020
  • Available Online: 14 Jan 2021
  • Publish Date: 25 Jan 2021
  • In recent years, materials with Circularly Polarized Luminescence (CPL) have received growing attention due to their wide applications in 3D displays, optical storage, optical security, etc. Supramolecular self-assembling is one of the most effective methods to construct CPL active materials, which can assemble different types of molecules into low-dimensional (0D, 1D and 2D) structures with unique functions. This review summarizes the research progress of self-assembled CPL active organic low-dimensional materials from recent years with emphasis on the driving force of supramolecular self-assembly. Firstly, the review systematically summarizes the current design strategies of self-assembled CPL active organic low-dimensional materials. Secondly, it focuses on their performance and applications. Finally, it discusses the future opportunities and challenges of this rapidly developing field.

     

  • loading
  • [1]
    LI ZH CH, LIU W W, CHENG H, et al. Spin-selective transmission and devisable chirality in two-layer metasurfaces[J]. Scientific Reports, 2017, 7: 8204. doi: 10.1038/s41598-017-08527-4
    [2]
    TAMURA K, SCHIMMEL P R. Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13750-13752. doi: 10.1073/pnas.0606070103
    [3]
    李猛, 林伟彬, 房蕾, 等. 手性有机小分子圆偏振发光的研究进展[J]. 化学学报,2017,75(12):1150-1163. doi: 10.6023/A17090440

    LI M, LIN W B, FANG L, et al. Recent progress on circularly polarized luminescence of chiral organic small molecules[J]. Acta Chimica Sinica, 2017, 75(12): 1150-1163. (in Chinese) doi: 10.6023/A17090440
    [4]
    ZINNA F, PASINI M, GALEOTTI F, et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence[J]. Advanced Functional Materials, 2017, 27(1): 1603719. doi: 10.1002/adfm.201603719
    [5]
    SONG F Y, XU Z, ZHANG Q SH, et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence[J]. Advanced Functional Materials, 2018, 28(17): 1800051. doi: 10.1002/adfm.201800051
    [6]
    YANG Y, DA COSTA R C, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J]. Nature Photonics, 2013, 7(8): 634-638. doi: 10.1038/nphoton.2013.176
    [7]
    TANG ZH L, IIDA H, HU H Y, et al. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage[J]. ACS Macro Letters, 2012, 1(2): 261-265. doi: 10.1021/mz200161s
    [8]
    KITAGAWA Y, WADA S, ISLAM M D J, et al. Chiral lanthanide lumino-glass for a circularly polarized light security device[J]. Communications Chemistry, 2020, 3: 119. doi: 10.1038/s42004-020-00366-1
    [9]
    SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2020, 32(41): 1900110. doi: 10.1002/adma.201900110
    [10]
    李军峰, 刘训华, 陈瑛, 等. 基于手性环己二胺稀土Eu(Ⅲ)高分子在能量传递和圆偏振荧光调控方面的研究[J]. 高分子学报,2015(3):252-258. doi: 10.11777/j.issn1000-3304.2015.14245

    LI J F, LIU X H, CHEN Y, et al. Tuning circularly polarized luminescence and energy transfer of Eu(Ⅲ)-grafting(R, R)-1, 2-aminocyclohexane polymers based on variable alkyl chains[J]. Acta Polymerica Sinica, 2015(3): 252-258. (in Chinese) doi: 10.11777/j.issn1000-3304.2015.14245
    [11]
    LIU M H, ZHANG L, WANG T Y. Supramolecular chirality in self-assembled systems[J]. Chemical Reviews, 2015, 115(15): 7304-7397. doi: 10.1021/cr500671p
    [12]
    LIU J ZH, SU H M, MENG L M, et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission[J]. Chemical Science, 2012, 3(9): 2737-2747. doi: 10.1039/c2sc20382k
    [13]
    XU L, WANG CH, LI Y X. et al. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2020, 59(38): 16675-16682. doi: 10.1002/anie.202006561
    [14]
    LI F, WANG Y X, Wang Z Y, et al. Red colored CPL emission of chiral 1, 2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure[J]. Polymer Chemistry, 2015, 6(38): 6802-6805. doi: 10.1039/C5PY01148E
    [15]
    ZHANG SH W, SHENG Y, WEI G, et al. Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers[J]. Polymer Chemistry, 2015, 6(13): 2416-2422. doi: 10.1039/C4PY01689K
    [16]
    WANG Y X, LI Y ZH, LIU SH, et al. Regulating circularly polarized luminescence signals of chiral binaphthyl-based conjugated polymers by tuning dihedral angles of binaphthyl moieties[J]. Macromolecules, 2016, 49(15): 5444-5451. doi: 10.1021/acs.macromol.6b00883
    [17]
    DENG M, MUKTHAR N F M, SCHLEY N D, et al. Yellow circularly polarized luminescence from C1-symmetrical copper(I) complexes[J]. Angewandte Chemie International Edition, 2020, 59(3): 1228-1231. doi: 10.1002/anie.201913672
    [18]
    HUANG Z ZH, MA X. Tailoring tunable luminescence via supramolecular assembly strategies[J]. Cell Reports Physical Science, 2020, 1(8): 100167. doi: 10.1016/j.xcrp.2020.100167
    [19]
    KUMAR J, NAKASHIMA T, KAWAI T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies[J]. The Journal of Physical Chemistry Letters, 2015, 6(17): 3445-3452. doi: 10.1021/acs.jpclett.5b01452
    [20]
    HU M, FENG H T, YUAN Y X, et al. Chiral AIEgens-chiral recognition, CPL materials and other chiral applications[J]. Coordination Chemistry Reviews, 2020, 416: 213329. doi: 10.1016/j.ccr.2020.213329
    [21]
    ZHAO T H, HAN J L, DUAN P F, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7): 1279-1292. doi: 10.1021/acs.accounts.0c00112
    [22]
    DUDEK S P, POUDEROIJEN M, ABBEL R, et al. Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes[J]. Journal of the American Chemical Society, 2005, 127(33): 11763-11768. doi: 10.1021/ja052054k
    [23]
    MARANGONI T, BONIFAZI D. Nano- and microstructuration of supramolecular materials driven by H-bonded uracil·2, 6-diamidopyridine complexes[J]. Nanoscale, 2013, 5(19): 8837-8851. doi: 10.1039/c3nr01711g
    [24]
    ZHANG T, CHEN H, MA X, et al. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink[J]. Industrial &Engineering Chemistry Research, 2017, 56(11): 3123-3128.
    [25]
    XING P Y, LI Y X, XUE S X, et al. Occurrence of chiral nanostructures induced by multiple hydrogen bonds[J]. Journal of the American Chemical Society, 2019, 141(25): 9946-9954. doi: 10.1021/jacs.9b03502
    [26]
    WANG ZH E, HAO A Y, XING P Y. Chiroptical helices of N-terminal aryl amino acids through orthogonal noncovalent interactions[J]. Angewandte Chemie International Edition, 2020, 59(28): 11556-11565. doi: 10.1002/anie.202003351
    [27]
    YANG L, WANG F, AUPHEDEOUS D I Y, et al. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels[J]. Nanoscale, 2019, 11(30): 14210-14215. doi: 10.1039/C9NR05033G
    [28]
    YE Q, ZHU D D, XU L Y, et al. The fabrication of helical fibers with circularly polarized luminescence via ionic linkage of binaphthol and tetraphenylethylene derivatives[J]. Journal of Materials Chemistry C, 2016, 4(7): 1497-1503. doi: 10.1039/C5TC04174K
    [29]
    YUAN X Y, HU M, ZHANG K R, et al. The largest CPL enhancement by further assembly of self-assembled superhelices based on the helical TPE macrocycle[J]. Materials Horizons, 2020. doi: 10.1039/domh01303j
    [30]
    JI L K, ZHAO Y, TAO M, et al. Dimension-tunable circularly polarized luminescent nanoassemblies with emerging selective chirality and energy transfer[J]. ACS Nano, 2020, 14(2): 2373-2384. doi: 10.1021/acsnano.9b09584
    [31]
    GOTO T, OKAZAKI Y, UEKI M, et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates[J]. Angewandte Chemie International Edition, 2017, 56(11): 2989-2993. doi: 10.1002/anie.201612331
    [32]
    WANG H, JI X F, LI ZH T, et al. Fluorescent supramolecular polymeric materials[J]. Advanced Materials, 2017, 29(14): 1606117. doi: 10.1002/adma.201606117
    [33]
    YEUNG C T, YIM K H, WONG H Y, et al. Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence[J]. Nature Communications, 2017, 8(1): 1128. doi: 10.1038/s41467-017-01025-1
    [34]
    WONG K M C, YAM V W W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior[J]. Accounts of Chemical Research, 2011, 44(6): 424-434. doi: 10.1021/ar100130j
    [35]
    ZHOU Y Y, LI H F, ZHU T Y, et al. A highly luminescent chiral tetrahedral Eu4L4(L')4 cage: chirality induction, chirality memory, and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2019, 141(50): 19634-19643. doi: 10.1021/jacs.9b07178
    [36]
    ZHU H T ZH, LI Q, SHI B B, et al. Formation of planar chiral platinum triangles via pillar[5]arene for circularly polarized luminescence[J]. Journal of the American Chemical Society, 2020, 142(41): 17340-17345. doi: 10.1021/jacs.0c09598
    [37]
    TAN Y B, OKAYASU Y, KATAO S, et al. Visible circularly polarized luminescence of octanuclear circular Eu(Ⅲ) helicate[J]. Journal of the American Chemical Society, 2020, 142(41): 17653-17661. doi: 10.1021/jacs.0c08229
    [38]
    ZHAO T H, HAN J L, JIN X, et al. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework[J]. Angewandte Chemie International Edition, 2019, 58(15): 4978-4982. doi: 10.1002/anie.201900052
    [39]
    LUSTIG W P, WANG F M, TEAT S J, et al. Chromophore-based luminescent metal-organic frameworks as lighting phosphors[J]. Inorganic Chemistry,, 2016, 55(15): 7250-7256. doi: 10.1021/acs.inorgchem.6b00897
    [40]
    BAUDRON S A. Luminescent metal-organic frameworks based on dipyrromethene metal complexes and BODIPYs[J]. CrystEngComm, 2016, 18(25): 4671-4680. doi: 10.1039/C6CE00450D
    [41]
    ZHAO T H, HAN J L, JIN X, et al. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks[J]. Research, 2020, 2020: 6452123.
    [42]
    ZHANG M M, LI K, ZANG S Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence[J]. Advanced Optical Materials, 2020, 8(14): 1902152. doi: 10.1002/adom.201902152
    [43]
    KONG Y J, YAN ZH P, LI S, et al. Photoresponsive propeller-like chiral AIE Copper(I) clusters[J]. Angewandte Chemie International Edition, 2020, 59(13): 5336-5340. doi: 10.1002/anie.201915844
    [44]
    ZHANG M M, DONG X Y, WANG ZH Y, et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters[J]. Angewandte Chemie International Edition, 2020, 59(25): 10052-10058. doi: 10.1002/anie.201908909
    [45]
    HAN ZH, DONG X Y, LUO P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J]. Science Advances, 2020, 6(6): eaay0107. doi: 10.1126/sciadv.aay0107
    [46]
    周明浩, 姜爽, 张天永, 等. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展,2020,32(4):361-370.

    ZHOU M H, JIANG SH, ZHANG T Y, et al. Construction and optoelectrical properties of chiral perovskite nanomaterials[J]. Progress in Chemistry, 2020, 32(4): 361-370. (in Chinese)
    [47]
    BILLING D G, LEMMERER A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II)[J]. Acta Crystallographica Section E, 2003, E59(6): m381-m383.
    [48]
    CHEN W J, ZHANG SH, ZHOU M H, et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(12): 3290-3295. doi: 10.1021/acs.jpclett.9b01224
    [49]
    DANG Y Y, LIU X L, SUN Y J, et al. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1689-1696. doi: 10.1021/acs.jpclett.9b03718
    [50]
    PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036. doi: 10.1021/ja01002a035
    [51]
    MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014, 47(7): 1971-1981. doi: 10.1021/ar500033n
    [52]
    SHINKAI S. Calixarenes-the third generation of supramolecules[J]. Tetrahedron, 1993, 49(40): 8933-8968. doi: 10.1016/S0040-4020(01)91215-3
    [53]
    XUE M, YANG Y, CHI X D, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry[J]. Accounts of Chemical Research, 2012, 45(8): 1294-1308. doi: 10.1021/ar2003418
    [54]
    CHEN J F, YIN X D, WANG B W, et al. Planar chiral organoboranes with thermoresponsive emission and circularly polarized luminescence: integration of pillar[5]arenes with boron chemistry[J]. Angewandte Chemie International Edition, 2020, 59(28): 11267-11272. doi: 10.1002/anie.202001145
    [55]
    TONG SH, LI J T, LIANG D D, et al. Catalytic enantioselective synthesis and switchable chiroptical property of inherently chiral macrocycles[J]. Journal of the American Chemical Society, 2020, 142(34): 14432-14436. doi: 10.1021/jacs.0c05369
    [56]
    HU L Y, LI K, SHANG W L, et al. Emerging cubic chirality in γCD-MOF for fabricating circularly polarized luminescent crystalline materials and the size effect[J]. Angewandte Chemie International Edition, 2020, 59(12): 4953-4958. doi: 10.1002/anie.202000589
    [57]
    LIANG J Q, GUO P P, QIN X J, et al. Hierarchically chiral lattice self-assembly induced circularly polarized luminescence[J]. ACS Nano, 2020, 14(3): 3190-3198. doi: 10.1021/acsnano.9b08408
    [58]
    HAN J M, GUO S, LU H, et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices[J]. Advanced Optical Materials, 2018, 6(17): 1800538. doi: 10.1002/adom.201800538
    [59]
    HAN J M, GUO S, WANG J, et al. Circularly polarized phosphorescent electroluminescence from chiral cationic iridium(III) isocyanide complexes[J]. Advanced Optical Materials, 2017, 5(22): 1700359. doi: 10.1002/adom.201700359
    [60]
    HAN J M, LU H, XU Y N, et al. Concentration-dependent circularly polarized luminescence of chiral cyclometalated platinum(II) complexes for electroluminescence[J]. Journal of Organometallic Chemistry, 2020, 915: 121240. doi: 10.1016/j.jorganchem.2020.121240
    [61]
    TU ZH L, YAN ZH P, LIANG X, et al. Axially chiral biphenyl compound-based thermally activated delayed fluorescent materials for high-performance circularly polarized organic light-emitting diodes[J]. Advanced Science, 2020, 7(15): 2000804. doi: 10.1002/advs.202000804
    [62]
    TAO J W, ZOU CH, JIANG H J, et al. Optically ambidextrous reflection and luminescence in self-organized left-handed chiral nematic cellulose nanocrystal films[J]. CCS Chemistry, 2020, 2(5): 932-945.
    [63]
    ZHAO Y, NIU D, TAN J J, et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP[J]. Small Methods, 2020, 4(10): 2000493. doi: 10.1002/smtd.202000493
    [64]
    李庆祥, 梁鸿宇, 陆学民, 等. 诱导手性圆偏振发光材料的研究进展[J]. 功能高分子学报,2019,32(6):671-682.

    LI Q X, LIANG H Y, LU X M, et al. Recent progress in chiral materials with induced circularly polarized luminescence[J]. Journal of Functional Polymers, 2019, 32(6): 671-682. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1971) PDF downloads(236) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return