| Citation: | CHEN Zhe-xue, WANG Wei-biao, LIANG Cheng, ZHANG Yong. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176 | 
 
	                | [1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896 | 
| [2] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. doi:  10.1038/natrevmats.2016.98 | 
| [3] | TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi:  10.1021/acs.chemrev.6b00558 | 
| [4] | XU Y H, WANG X X, ZHANG W L, et al. Recent progress in two-dimensional inorganic quantum dots[J]. Chemical Society Reviews, 2018, 47(2): 586-625. doi:  10.1039/C7CS00500H | 
| [5] | ASHTON M, PAUL J, SINNOTT S B, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J]. Physical Review Letters, 2017, 118(10): 106101. doi:  10.1103/PhysRevLett.118.106101 | 
| [6] | WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521. doi:  10.1038/nnano.2015.71 | 
| [7] | TAN CH L, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 2015, 44(9): 2713-2731. doi:  10.1039/C4CS00182F | 
| [8] | NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. | 
| [9] | LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042. | 
| [10] | HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. doi:  10.1038/nature22391 | 
| [11] | CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi:  10.1038/nature26160 | 
| [12] | BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. doi:  10.1126/science.1246501 | 
| [13] | BHIMANAPATI G R, LIN ZH, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539. doi:  10.1021/acsnano.5b05556 | 
| [14] | ZHU F F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10): 1020-1025. doi:  10.1038/nmat4384 | 
| [15] | DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. doi:  10.1021/acs.chemrev.8b00056 | 
| [16] | LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi:  10.1002/adma.201104798 | 
| [17] | PENG D, ZHANG L, LI F F, et al. Facile and green approach to the synthesis of boron nitride quantum dots for 2, 4, 6-trinitrophenol sensing[J]. ACS Applied Materials &Interfaces, 2018, 10(8): 7315-7323. | 
| [18] | NAJAFI L, TAHERI B, MARTíN-GARCÍA B, et al. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%[J]. ACS Nano, 2018, 12(11): 10736-10754. doi:  10.1021/acsnano.8b05514 | 
| [19] | YONG Y, CHENG X J, BAO T, et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy[J]. ACS Nano, 2015, 9(12): 12451-12463. doi:  10.1021/acsnano.5b05825 | 
| [20] | HA H D, HAN D J, CHOI J S, et al. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon[J]. Small, 2014, 10(19): 3858-3862. doi:  10.1002/smll.201400988 | 
| [21] | ZHOU J B, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359. doi:  10.1038/s41586-018-0008-3 | 
| [22] | WANG L, XU X Z, ZHANG L N, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570(7759): 91-95. doi:  10.1038/s41586-019-1226-z | 
| [23] | XU Y Q, CHEN SH L, DOU ZH P, et al. Robust production of 2D quantum sheets from bulk layered materials[J]. Materials Horizons, 2019, 6(7): 1416-1424. doi:  10.1039/C9MH00272C | 
| [24] | BAI L Q, XUE N, ZHAO Y F, et al. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications[J]. Nano Research, 2018, 11(4): 2034-2045. doi:  10.1007/s12274-017-1820-z | 
| [25] | CAO Y, DONG H F, PU SH T, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J]. Nano Research, 2018, 11(8): 4074-4081. doi:  10.1007/s12274-018-1990-3 | 
| [26] | LEI F C, LIU W, SUN Y F, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7: 12697. doi:  10.1038/ncomms12697 | 
| [27] | XU H, ZHANG L, DING Z CH, et al. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells[J]. Nano Research, 2018, 11(8): 4293-4301. doi:  10.1007/s12274-018-2015-y | 
| [28] | DEB J, PAUL D, SARKAR U. Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots[J]. The Journal of Physical Chemistry A, 2020, 124(7): 1312-1320. doi:  10.1021/acs.jpca.9b10241 | 
| [29] | BRANDT O, LAGE H, PLOOG K. Large excitonic nonlinearity in InAs quantum sheets[J]. Applied Physics Letters, 1991, 59(5): 576-578. doi:  10.1063/1.105391 | 
| [30] | BUTCHER P N, MCINNES J A. The energy dependence of the conductance and scattering wave functions of a 2D quantum dot[J]. Journal of Physics:Condensed Matter, 1995, 7(33): 6717-6726. doi:  10.1088/0953-8984/7/33/010 | 
| [31] | 徐元清, 张勇. 首次实现二维量子片的普适和规模制备[J]. 物理,2019,48(8):522-525. doi:  10.7693/wl20190808 XU Y Q, ZHANG Y. First demonstration of universal and scalable production of 2D QSs[J]. Physics, 2019, 48(8): 522-525. (in Chinese) doi:  10.7693/wl20190808 | 
| [32] | ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi:  10.1021/cr900070d | 
| [33] | ZHOU X J, GUO SH W, ZHONG P, et al. Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite[J]. RSC Advances, 2016, 6(60): 54644-54648. doi:  10.1039/C6RA06012A | 
| [34] | LI H L, TAY R Y, TSANG S H, et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J]. Small, 2015, 11(48): 6491-6499. doi:  10.1002/smll.201501632 | 
| [35] | DING X G, PENG F, ZHOU J, et al. Defect engineered bioactive transition metals dichalcogenides quantum dots[J]. Nature Communications, 2019, 10: 41. doi:  10.1038/s41467-018-07835-1 | 
| [36] | SAMADI M, SARIKHANI N, ZIRAK M, et al. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives[J]. Nanoscale Horizons, 2018, 3(2): 90-204. doi:  10.1039/C7NH00137A | 
| [37] | SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. doi:  10.1021/nl903868w | 
| [38] | WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi:  10.1038/nnano.2012.193 | 
| [39] | MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi:  10.1039/C4CS00102H | 
| [40] | CHURCHILL H O H, JARILLO-HERRERO P. Phosphorus joins the family[J]. Nature Nanotechnology, 2014, 9(5): 330-331. doi:  10.1038/nnano.2014.85 | 
| [41] | LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi:  10.1038/nnano.2014.35 | 
| [42] | WANG Y, WANG X X, XU Y H, et al. Simultaneous synthesis of WO3−x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications[J]. Small, 2017, 13(13): 1603689. | 
| [43] | DING D D, GUO W, GUO CH SH, et al. MoO3−x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment[J]. Nanoscale, 2017, 9(5): 2020-2029. doi:  10.1039/C6NR09046J | 
| [44] | XUE Q, ZHANG H J, ZHU M SH, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847. doi:  10.1002/adma.201604847 | 
| [45] | LI R J, TANG L B, ZHAO Q, et al. In2S3 quantum dots: preparation, properties and optoelectronic application[J]. Nanoscale Research Letters, 2019, 14: 161. doi:  10.1186/s11671-019-2992-0 | 
| [46] | HAMER M, TÓVÁRI E, ZHU M J, et al. Gate-defined quantum confinement in InSe-based van der Waals heterostructures[J]. Nano Letters, 2018, 18(6): 3950-3955. doi:  10.1021/acs.nanolett.8b01376 | 
| [47] | CARTER S G, BRACKER A S, BRYANT G W, et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator[J]. Physical Review Letters, 2018, 121(24): 246801. doi:  10.1103/PhysRevLett.121.246801 | 
| [48] | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi:  10.1038/nnano.2010.279 | 
| [49] | BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227. doi:  10.1038/nnano.2016.242 | 
| [50] | MILLER T S, JORGE A B, SUTER T M, et al. Carbon nitrides: synthesis and characterization of a new class of functional materials[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15613-15638. doi:  10.1039/C7CP02711G | 
| [51] | ALTAVILLA C, SARNO M, CIAMBELLI P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885. doi:  10.1021/cm200837g | 
| [52] | ARSLAN O, BELKOURA L, MATHUR S. Swift synthesis, functionalization and phase-transfer studies of ultrastable, visible light emitting oleate@ZnO quantum dots[J]. Journal of Materials Chemistry C, 2015, 3(45): 11965-11973. doi:  10.1039/C5TC03377B | 
| [53] | LI X ZH, FANG Y Y, WANG J, et al. High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting[J]. Small, 2019, 15(30): 1902427. doi:  10.1002/smll.201902427 | 
| [54] | GOPALAKRISHNAN D, DAMIEN D, LI B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications, 2015, 51(29): 6293-6296. doi:  10.1039/C4CC09826A | 
| [55] | WANG W J, YU J C, SHEN ZH R, et al. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications, 2014, 50(70): 10148-10150. doi:  10.1039/C4CC02543A | 
| [56] | CHENG ZH ZH, SHIFA T A, WANG F M, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution[J]. Advanced Materials, 2018, 30(26): 1707433. doi:  10.1002/adma.201707433 | 
| [57] | WANG Y, LIU Y, ZHANG J F, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500. doi:  10.1126/sciadv.1701500 | 
| [58] | ZHANG J F, ZHU T Y, WANG Y, et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution[J]. Materials Today, 2020, 36: 83-90. doi:  10.1016/j.mattod.2020.02.006 | 
| [59] | HAO Y, SU W, HOU L X, et al. Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating[J]. Science China Materials, 2020, 63(6): 1046-1053. doi:  10.1007/s40843-019-1270-x | 
| [60] | HAN CH CH, ZHANG Y, GAO P, et al. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials[J]. Nano Letters, 2017, 17(12): 7767-7772. doi:  10.1021/acs.nanolett.7b03968 | 
| [61] | SYNNATSCHKE K, CIESLIK P A, HARVEY A, et al. Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides[J]. Chemistry of Materials, 2019, 31(24): 10049-10062. doi:  10.1021/acs.chemmater.9b02905 | 
| [62] | ZHANG X, LAI ZH CH, LIU ZH D, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angewandte Chemie International Edition, 2015, 54(18): 5425-5428. doi:  10.1002/anie.201501071 | 
| [63] | LIU Y, LIANG CH L, WU J J, et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J]. Materials Today, 2019, 22: 17-24. doi:  10.1016/j.mattod.2018.06.007 | 
| [64] | XU Y Q, CHANG J Q, LIANG C, et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets[J]. ACS Applied Materials &Interfaces, 2020, 12(42): 47784-47791. | 
| [65] | LIANG CH, SUI X Y, WANG A CH, et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects[J]. Advanced Materials Interfaces, 2020, 7(24): 2001130. doi:  10.1002/admi.202001130 | 
| [66] | AN T C, TANG J, ZHANG Y Y, et al. Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires[J]. ACS Applied Materials &Interfaces, 2016, 8(20): 12772-12779. | 
| [67] | TANG L B, JI R B, LI X M, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J]. ACS Nano, 2014, 8(6): 6312-6320. doi:  10.1021/nn501796r | 
| [68] | KIM S, HWANG S W, KIM M K, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano, 2012, 6(9): 8203-8208. doi:  10.1021/nn302878r | 
| [69] | REN J, WEBER F, WEIGERT F, et al. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots[J]. Nanoscale, 2019, 11(4): 2056-2064. doi:  10.1039/C8NR08595A | 
| [70] | LI L L, JI J, FEI R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14): 2971-2979. doi:  10.1002/adfm.201200166 | 
| [71] | ZHOU M, LOU X W, XIE Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J]. Nano Today, 2013, 8(6): 598-618. doi:  10.1016/j.nantod.2013.12.002 | 
| [72] | LIU ZH K, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679. doi:  10.1039/C4CS00455H | 
| [73] | MANIKANDAN A, CHEN Y Z, SHEN C C, et al. A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics[J]. Progress in Quantum Electronics, 2019, 68: 100226. doi:  10.1016/j.pquantelec.2019.100226 | 
| [74] | SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. doi:  10.1039/C4TC01191K | 
| [75] | KWON W, KIM Y H, LEE C L, et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite[J]. Nano Letters, 2014, 14(3): 1306-1311. doi:  10.1021/nl404281h | 
| [76] | JIN S H, KIM D H, JUN G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245. doi:  10.1021/nn304675g | 
| [77] | ZHU X Q, XIANG J X, LI J, et al. Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups[J]. Journal of Colloid and Interface Science, 2018, 511: 209-214. doi:  10.1016/j.jcis.2017.09.118 | 
| [78] | BASKO D M, DUCHEMIN I, BLASE X. Optical properties of graphene quantum dots: the role of chiral symmetry[J]. 2D Materials, 2020, 7(2): 025041. doi:  10.1088/2053-1583/ab7688 | 
| [79] | NIU X H, LI Y H, SHU H B, et al. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots[J]. Nanoscale, 2016, 8(46): 19376-19382. doi:  10.1039/C6NR06447G | 
| [80] | YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J]. Advanced Materials, 2014, 26(20): 3297-3303. doi:  10.1002/adma.201305299 | 
| [81] | TANG J M, SAKAMOTO M, OHTA H, et al. 1% defect enriches MoS2 quantum dot: catalysis and blue luminescence[J]. Nanoscale, 2020, 12(7): 4352-4358. doi:  10.1039/C9NR07612C | 
| [82] | QU D, SUN Z CH, ZHENG M, et al. Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging[J]. Advanced Optical Materials, 2015, 3(3): 360-367. doi:  10.1002/adom.201400549 | 
| [83] | ZHANG SH, JIA X F, WANG E K. Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots[J]. Nanoscale, 2016, 8(33): 15152-15157. doi:  10.1039/C6NR04726B | 
| [84] | AUTERE A, JUSSILA H, DAI Y Y, et al. Nonlinear optics with 2D layered materials[J]. Advanced Materials, 2018, 30(24): 1705963. doi:  10.1002/adma.201705963 | 
| [85] | LI J L, BAO H CH, HOU X L, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angewandte Chemie International Edition, 2012, 51(8): 1830-1834. doi:  10.1002/anie.201106102 | 
| [86] | SUN J H, GU Y J, LEI D Y, et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS2 nanosheets and nanodots: the role of exciton resonance[J]. ACS Photonics, 2016, 3(12): 2434-2444. doi:  10.1021/acsphotonics.6b00682 | 
| [87] | LIU Q, GUO B D, RAO Z Y, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 2013, 13(6): 2436-2441. doi:  10.1021/nl400368v | 
| [88] | COX J D, SILVEIRO I, DE ABAJO F J G. Quantum effects in the nonlinear response of graphene plasmons[J]. ACS Nano, 2016, 10(2): 1995-2003. doi:  10.1021/acsnano.5b06110 | 
| [89] | COX J D, DE ABAJO F J G. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene[J]. ACS Photonics, 2015, 2(2): 306-312. doi:  10.1021/ph500424a | 
| [90] | GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. doi:  10.1038/nphoton.2012.262 | 
| [91] | LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi:  10.1038/nmat4792 | 
| [92] | WANG Y W, LIU S, ZENG B W, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J]. Nanoscale, 2017, 9(14): 4683-4690. doi:  10.1039/C6NR09235G | 
| [93] | CHEN X, PONRAJ J S, FAN D Y, et al. An overview of the optical properties and applications of black phosphorus[J]. Nanoscale, 2020, 12(6): 3513-3534. doi:  10.1039/C9NR09122J | 
| [94] | XU Y H, WANG ZH T, GUO ZH N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. doi:  10.1002/adom.201600214 | 
| [95] | LU S B, MIAO L L, GUO Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194. doi:  10.1364/OE.23.011183 | 
| [96] | LU L, TANG X, CAO R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Advanced Optical Materials, 2017, 5(17): 1700301. doi:  10.1002/adom.201700301 | 
| [97] | WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi:  10.1002/adma.201306322 | 
| [98] | ZHANG Y, WANG J J, BALLANTINE K E, et al. Hybrid plasmonic nanostructures with unconventional nonlinear optical properties[J]. Advanced Optical Materials, 2014, 2(4): 331-337. doi:  10.1002/adom.201300503 | 
| [99] | WANG F, ROZHIN A G, SCARDACI V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742. doi:  10.1038/nnano.2008.312 | 
| [100] | BAO Q L, ZHANG H, NI ZH H, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3): 297-307. doi:  10.1007/s12274-010-0082-9 | 
| [101] | SU L M, FAN X, YIN T, et al. Inorganic 2D luminescent materials: structure, luminescence modulation, and applications[J]. Advanced Optical Materials, 2020, 8(1): 1900978. doi:  10.1002/adom.201900978 | 
| [102] | ZHENG J L, YANG ZH H, SI C, et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6): 1466-1476. doi:  10.1021/acsphotonics.7b00231 | 
| [103] | WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi:  10.1002/adom.201801274 | 
| [104] | LEE Y J, YEH T W, ZOU CH, et al. Graphene quantum dot vertical cavity surface-emitting lasers[J]. ACS Photonics, 2019, 6(11): 2894-2901. doi:  10.1021/acsphotonics.9b00976 | 
| [105] | 孙俊杰, 陈飞, 何洋, 等. 新型过渡金属硫化物在超快激光中的应用[J]. 中国光学,2020,13(4):647-659. doi:  10.37188/CO.2019-0241 SUN J J, CHEN F, HE Y, et al. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. (in Chinese) doi:  10.37188/CO.2019-0241 | 
| [106] | YANG Y F, HU H W, WU M J, et al. Stretchable and broadband cavity-free lasers based on all 2D metamaterials[J]. Advanced Optical Materials, 2020, 8(7): 1901326. doi:  10.1002/adom.201901326 | 
| [107] | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. doi:  10.1038/nature13970 | 
| [108] | DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. doi:  10.1038/s41467-017-02529-6 | 
| [109] | JIANG Q, WU CH SH, WANG ZH J, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J]. Nano Energy, 2018, 45: 266-272. doi:  10.1016/j.nanoen.2018.01.004 | 
| [110] | HUANG D P, XIE Y, LU D ZH, et al. Demonstration of a white laser with V2C MXene-based quantum dots[J]. Advanced Materials, 2019, 31(24): 1901117. | 
| [111] | ZHANG H, ROGERS J A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms[J]. Advanced Optical Materials, 2019, 7(2): 1800936. doi:  10.1002/adom.201800936 | 
| [112] | LU G ZH, WU M J, LIN T N, et al. Electrically pumped white-light-emitting diodes based on histidine-doped MoS2 quantum dots[J]. Small, 2019, 15(30): 1901908. doi:  10.1002/smll.201901908 | 
