Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
Citation: DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175

Room-temperature terahertz photodetectors based on black arsenic-phosphorus

doi: 10.37188/CO.2020-0175
Funds:  Supported by National Natural Science Foundation of China (No. 61927813,No. 61875223,No. 61922082); National Key R & D Program of China (No. 2016YFE015700)
More Information
  • Author Bio:

    DONG Zhuo (1994—), male, born in Yingcheng City, Hubei province, Ph. D candidate, School of Nano-Tech and Nano-Bionics, University of Science and Technology of China. He got his bachelor's degree from Hubei University in 2017. His research interests are room-temperature terahertz photodetectors based on two-dimensional materials. E-mail: zdong2018@sinano.ac.cn

    ZHANG Kai (1983—), male, born in Xiantao City, Hubei province Ph. D, Professor, Nano-Tech and Nano-Bionics, Chinese Academy of Science. He got his Ph. D. from Hong Kong Polytechnic University in 2011. His research interests are in the areas of narrow-gap two-dimensional (2D) materials and devices, with research activities ranging from the exploration and controllable growth of narrow-gap 2D semiconductors (such as black phosphorus) and topological materials, as well as the development of infrared & terahertz lasers and photodetectors. E-mail: kzhang2015@sinano.ac.cn

  • Corresponding author: zhongchang.wang@inl.intkzhang2015@sinano.ac.cn
  • Received Date: 30 Sep 2020
  • Rev Recd Date: 13 Oct 2020
  • Available Online: 25 Dec 2020
  • Publish Date: 25 Jan 2021
  • Terahertz technology is indispensable in plenty of fields due to the abundant interactions between terahertz waves and matter. In order to meet the needs of terahertz applications, the development of highly sensitive and portable terahertz detectors based on distinctive physical mechanisms and various materials with excellent properties are urgently required. Black arsenic-phosphorus is a novel two-dimensional material that has a tunable band gap and transport characteristics with varying chemical composition, which has gained widespread interest in optoelectronic applications. Recent research on b-AsxP1-x mainly focuses on infrared detection, while the detection of terahertz has not yet been applied. Herein, an antenna-coupled terahertz detector based on exfoliated multilayer black arsenic-phosphorus is demonstrated. The terahertz response performance of the detector reflects two different mechanisms, which have a competitive relationship in the detection process. In particular, the detection mechanism can be tailored by varying the chemical composition of black arsenic-phosphorus. By balancing the band gap and carrier mobility, a responsivity of over 28.23 V/W and a noise equivalent power of less than 0.53 nW/Hz1/2 are obtained at 0.37 THz. This implies that black arsenic-phosphorus has great potential in terahertz technology.

     

  • loading
  • [1]
    GUO W L, WANG L, CHEN X SH, et al. Graphene-based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics Letters, 2018, 43(8): 1647-1650. doi: 10.1364/OL.43.001647
    [2]
    CASTILLA S, TERRÉS B, AUTORE M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Letters, 2019, 19(5): 2765-2773. doi: 10.1021/acs.nanolett.8b04171
    [3]
    VITI L, PURDIE D G, LOMBARDO A, et al. HBN-encapsulated, graphene-based, room-temperature terahertz receivers, with high speed and low noise[J]. Nano Letters, 2020, 20(5): 3169-3177. doi: 10.1021/acs.nanolett.9b05207
    [4]
    LIU CH L, WANG L, CHEN X SH, et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection[J]. Carbon, 2018, 130: 233-240. doi: 10.1016/j.carbon.2018.01.020
    [5]
    HUANG ZH M, TONG J CH, HUANG J G, et al. Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced Materials, 2014, 26(38): 6594-6598. doi: 10.1002/adma.201402352
    [6]
    CHEREDNICHENKO S, HAMMAR A, BEVILACQUA S, et al. A room temperature bolometer for terahertz coherent and incoherent detection[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 395-402. doi: 10.1109/TTHZ.2011.2164654
    [7]
    SAKHNO M, GOLENKOV A, SIZOV F. Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors[J]. Journal of Applied Physics, 2013, 114(16): 164503. doi: 10.1063/1.4826364
    [8]
    ROGALSKI A, SIZOV F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404.
    [9]
    SUN Y F, SUN J D, ZHOU Y, et al. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 2011, 98(25): 252103. doi: 10.1063/1.3601489
    [10]
    VITI L, POLITANO A, VITIELLO M S. Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges[J]. APL Materials, 2017, 5(3): 035602. doi: 10.1063/1.4979090
    [11]
    VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871. doi: 10.1038/nmat3417
    [12]
    GUO W L, DONG ZH, XU Y J, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices[J]. Advanced Science, 2020, 7(5): 1902699. doi: 10.1002/advs.201902699
    [13]
    TREDICUCCI A, VITIELLO M S. Device concepts for graphene-based terahertz photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 8500109.
    [14]
    DYAKONOV M, SHUR M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current[J]. Physical Review Letters, 1993, 71(15): 2465-2468. doi: 10.1103/PhysRevLett.71.2465
    [15]
    VITI L, HU J, COQUILLAT D, et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Scientific Reports, 2016, 6: 20474. doi: 10.1038/srep20474
    [16]
    CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature Nanotechnology, 2014, 9(10): 814-819. doi: 10.1038/nnano.2014.182
    [17]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [18]
    MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033. doi: 10.1038/natrevmats.2017.33
    [19]
    MELLNIK A R, LEE J S, RICHARDELLA A, et al. Spin-transfer torque generated by a topological insulator[J]. Nature, 2014, 511(7510): 449-451. doi: 10.1038/nature13534
    [20]
    LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
    [21]
    HU Y, QI ZH H, LU J Y, et al. van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151
    [22]
    QI ZH H, HU Y, JIN ZH, et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12087-12090. doi: 10.1039/C9CP01052A
    [23]
    WANG X X, HU Y, MO J B, et al. Arsenene: a potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13): 5151-5158. doi: 10.1002/anie.201913675
    [24]
    BANDURIN D A, SVINTSOV D, GAYDUCHENKO I, et al. Resonant terahertz detection using graphene plasmons[J]. Nature Communications, 2018, 9(1): 5392. doi: 10.1038/s41467-018-07848-w
    [25]
    LIU CH L, WANG L, CHEN X SH, et al. Top-gated black phosphorus phototransistor for sensitive broadband detection[J]. Nanoscale, 2018, 10(13): 5852-5858. doi: 10.1039/C7NR09545G
    [26]
    TANG W W, POLITANO A, GUO CH, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi: 10.1002/adfm.201801786
    [27]
    QIN H, SUN J D, LIANG SH X, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116: 760-765. doi: 10.1016/j.carbon.2017.02.037
    [28]
    VITI L, COQUILLAT D, POLITANO A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Letters, 2016, 16(1): 80-87. doi: 10.1021/acs.nanolett.5b02901
    [29]
    XIE Y, LIANG F, CHI SH M, et al. Defect engineering of MoS2 for room-temperature terahertz photodetection[J]. ACS Applied Materials &Interfaces, 2020, 12(6): 7351-7357.
    [30]
    LIU B L, KÖPF M, ABBAS A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Advanced Materials, 2015, 27(30): 4423-4429. doi: 10.1002/adma.201501758
    [31]
    PRADHAN N R, GARCIA C, LUCKING M C, et al. Raman and electrical transport properties of few-layered arsenic-doped black phosphorus[J]. Nanoscale, 2019, 11(39): 18449-18463. doi: 10.1039/C9NR04598H
    [32]
    LONG M SH, GAO A Y, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 2017, 3(6): e1700589. doi: 10.1126/sciadv.1700589
    [33]
    TAN W C, HUANG L, NG R J, et al. A black phosphorus carbide infrared phototransistor[J]. Advanced Materials, 2018, 30(6): 1705039. doi: 10.1002/adma.201705039
    [34]
    WU F, XIA H, SUN H D, et al. AsP/InSe van der waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J]. Advanced Functional Materials, 2019, 29(12): 1900314. doi: 10.1002/adfm.201900314
    [35]
    SHI X Y, WANG T, WANG J, et al. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation[J]. Optical Materials Express, 2019, 9(5): 2348-2357. doi: 10.1364/OME.9.002348
    [36]
    SUN J D, QIN H, LEWIS R A, et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J]. Applied Physics Letters, 2012, 100(17): 173513. doi: 10.1063/1.4705306
    [37]
    WU C Y, ZHOU W, YAO N J, et al. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector[J]. Applied Physics Express, 2019, 12(5): 052013. doi: 10.7567/1882-0786/ab14fc
    [38]
    LI S S. Semiconductor Physical Electronics[M]. Boston, MA: Springer, 1993.
    [39]
    SUN J D, FENG W, DING Q F, et al. Smaller antenna-gate gap for higher sensitivity of GaN/AlGaN HEMT terahertz detectors[J]. Applied Physics Letters, 2020, 116(16): 161109. doi: 10.1063/1.5142436
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(2144) PDF downloads(190) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return