Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
MENG Qi, SUN Zheng. Solutions to inhomogeneous and unstable illumination in biological photoacoustic tomography[J]. Chinese Optics, 2021, 14(2): 307-319. doi: 10.37188/CO.2020-0142
Citation: MENG Qi, SUN Zheng. Solutions to inhomogeneous and unstable illumination in biological photoacoustic tomography[J]. Chinese Optics, 2021, 14(2): 307-319. doi: 10.37188/CO.2020-0142

Solutions to inhomogeneous and unstable illumination in biological photoacoustic tomography

doi: 10.37188/CO.2020-0142
Funds:  Supported by National Natural Science Foundation of China (No. 62071181)
More Information
  • Corresponding author: sunzheng@ncepu.edu.cn
  • Received Date: 12 Aug 2020
  • Rev Recd Date: 21 Sep 2020
  • Available Online: 03 Feb 2021
  • Publish Date: 23 Mar 2021
  • In biological Photoacoustic Tomography (PAT), the images of initial pressure, optical deposition and optical properties are usually reconstructed from acoustic measurements based on an ideal assumption of uniform and stable illumination for simplicity. However, in practical applications, optical attenuation and inhomogeneous distribution of light fluence in tissues may occur after the imaging target is illuminated by short laser pulses, which results in inaccurate image reconstruction and reduced image quality. This paper summarizes current methods for reducing errors caused by inhomogeneous and unstable illumination in PAT under non-ideal conditions and discusses the advantages and limits of these methods.

     

  • loading
  • [1]
    WANG L V, YAO J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638. doi: 10.1038/nmeth.3925
    [2]
    DELAZEROA A, PAULUS Y M, TEED R, et al. Photoacoustic ocular imaging[J]. Optics Letters, 2010, 35(3): 270-272. doi: 10.1364/OL.35.000270
    [3]
    LI JW, XIAO H, YOON S J, et al. Functional photoacoustic imaging of gastric acid secretion using pH-responsive polyaniline nanoprobes[J]. Small, 2016, 12(34): 4690-4696. doi: 10.1002/smll.201601359
    [4]
    WANG X D, PANG Y J, KU G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 2003, 21(7): 803-806. doi: 10.1038/nbt839
    [5]
    ISKANDER-RIZK S, VAN DER STEEN A F W, VAN SOEST G. Photoacoustic imaging for guidance of interventions in cardiovascular medicine[J]. Physics in Medicine &Biology, 2019, 64(16): 16TR01.
    [6]
    POUDEL J, LOU Y, ANASTASIO M A. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography[J]. Physics in Medicine &Biology, 2019, 64(14): 14TR01.
    [7]
    SPADIN F, JAEGER M, NUSTER R, et al. Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting[J]. Photoacoustics, 2020, 17: 100149. doi: 10.1016/j.pacs.2019.100149
    [8]
    WANG B, WEI N N, PENG K, et al. Modified back-projection method in acoustic resolution based photoacoustic endoscopy for improved lateral resolution[J]. Medical Physics, 2018, 45(10): 4430-4438. doi: 10.1002/mp.13129
    [9]
    ZHENG S, HAN D D, YUAN Y. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal[J]. Computers in Biology and Medicine, 2016, 76: 60-68. doi: 10.1016/j.compbiomed.2016.06.028
    [10]
    WANG K, ANASTASIO M A. A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry[J]. Physics in Medicine &Biology, 2012, 57(23): N493-499.
    [11]
    COX B T, LAUFER J G, BEARD P C, et al. Quantitative spectroscopic photoacoustic imaging: a review[J]. Journal of Biomedical Optics, 2012, 17(6): 061202. doi: 10.1117/1.JBO.17.6.061202
    [12]
    JAVAHERIAN A, HOLMAN S. Direct quantitative photoacoustic tomography for realistic acoustic media[J]. Inverse Problems, 2019, 35: 084004. doi: 10.1088/1361-6420/ab091e
    [13]
    林剑萍, 廖一鹏. 结合分数阶微分及Retinex的NSCT自适应低照度图像增强[J]. 液晶与显示,2020,35(4):360-373. doi: 10.3788/YJYXS20203504.0360

    LIN J P, LIAO Y P. NSCT adaptive low illumination image enhancement combining fractional differential and retinex[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 360-373. (in Chinese) doi: 10.3788/YJYXS20203504.0360
    [14]
    COX B T, ARRIDGE S R, KÖSTLI K P, et al. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method[J]. Applied Optics, 2006, 45(8): 1866-1875. doi: 10.1364/AO.45.001866
    [15]
    ROSENTHAL A, RAZANSKY D, NTZIACHRISTOS V. Quantitative optoacoustic signal extraction using sparse signal representation[J]. IEEE Transactions on Medical Imaging, 2009, 28(12): 1997-2006. doi: 10.1109/TMI.2009.2027116
    [16]
    BU SH H, LIU ZH B, SHIINA T, et al. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1354-1363. doi: 10.1109/TBME.2012.2187649
    [17]
    DORAN A E, HIRATA S. Monte Carlo second- and third-order many-body green’s function methods with frequency-dependent, nondiagonal self-energy[J]. Journal of Chemical Theory and Computation, 2019, 15(11): 6097-6110. doi: 10.1021/acs.jctc.9b00693
    [18]
    邓衍亚, 李伟伟, 林继, 等. 三维高频声波的矩阵压缩边界节点法模拟[J]. 力学季刊,2019,40(1):32-38.

    DENG Y Y, LI W W, LIN J, et al. Simulation of three-dimensional high frequency acoustic wave by matrix compression boundary node method[J]. Chinese Quarterly of Mechanics, 2019, 40(1): 32-38. (in Chinese)
    [19]
    DEÁN-BEN X L, STIEL A C, JIANG YY, et al. Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography[J]. Optics Letters, 2015, 40(20): 4691-4694. doi: 10.1364/OL.40.004691
    [20]
    HUSSAIN A, PETERSEN W, STALEY J, et al. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics[J]. Optics Letters, 2016, 41(8): 1720-1723. doi: 10.1364/OL.41.001720
    [21]
    MIZEVA I, DREMIN V, POTAPOVA E, et al. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin[J]. IEEE Transactions on Bio-medical Engineering, 2020, 67(7): 1882-1889.
    [22]
    钱伟, 蒋明. 数字图像相关方法中数字散斑场的制作与应用研究[J]. 液晶与显示,2020,35(8):861-869. doi: 10.37188/YJYXS20203508.0861

    QIAN W, JIANG M. Design and application of digital speckle patterns in digital image correlation method[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(8): 861-869. (in Chinese) doi: 10.37188/YJYXS20203508.0861
    [23]
    ZHAO L Y, YANG M, JIANG Y X, et al. Optical fluence compensation for handheld photoacoustic probe: an in vivo human study case[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1740002. doi: 10.1142/S1793545817400028
    [24]
    JIN H R, ZHANG R C, LIU Y, et al. A single sensor dual-modality photoacoustic fusion imaging for compensation of light fluence variation[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(6): 1810-1813. doi: 10.1109/TBME.2019.2904502
    [25]
    JIN H R, ZHANG R C, LIU Y, et al. Passive ultrasound aided acoustic resolution photoacoustic microscopy imaging for layered heterogeneous media[J]. Applied Physics Letters, 2018, 113(24): 241901. doi: 10.1063/1.5064417
    [26]
    MOOTHANCHERY M, BI R ZH, KIM J Y, et al. Optical resolution photoacoustic microscopy based on multimode fibers[J]. Biomedical Optics Express, 2018, 9(3): 1190-1197. doi: 10.1364/BOE.9.001190
    [27]
    MOOTHANCHERY M, DEV K, BALASUNDARAM G, et al. Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner[J]. Journal of Biophotonics, 2020, 13(2): e201960127.
    [28]
    BAUER A Q, NOTHDURFT RE, CULVER JF, et al. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography[J]. Journal of Biomedical Optics,, 2011, 16(9): 096016. doi: 10.1117/1.3626212
    [29]
    MAHMOODKALAYEH S, ZAREI M, ANSARI M A, et al. Improving vascular imaging with co-planar mutually guided photoacoustic and diffuse optical tomography: a simulation study[J]. Biomedical Optics Express, 2020, 11(8): 4333-4347. doi: 10.1364/BOE.385017
    [30]
    DAOUDI K, MOLENAAR R, VANLEEUWEN T G, et al. Absolute measurement of absorption coefficient by combining photoacoustics and acousto-optics[C]. Proceedings of SPIE International Conference on Photons Plus Ultrasound: Imaging and Sensing 2011, 2011, 7899: 78990V.
    [31]
    DAOUDI K, HUSSAIN A, HONDEBRINK E, et al. Correcting photoacoustic signals for fluence variations using acousto-optic modulation[J]. Optics Express, 2012, 20(13): 14117-14129. doi: 10.1364/OE.20.014117
    [32]
    HUSSAIN A, DAOUDI K, HONDEBRINK E, et al.. Quantitative photoacoustic imaging by acousto-optically measured light fluence[C]. In Biomedical Optics and 3-D Imaging, OSA Technical Digest (Optical Society of America, 2012), OSA, 2012.
    [33]
    STEENBERGEN W, MOLENAAR R, DAOUDI K. Combined application of photoacoustic and acousto-optic imaging for model-free quantitative optical absorption mapping[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 2641.
    [34]
    STEENBERGEN W. Towards quantitative imaging of absorption coefficients in turbid media by combining photoacoustic and acousto-optic imaging[C]. Biomedical Optics and 3-D Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), 2010.
    [35]
    NYKÄNEN O, PULKKINEN A, TARVAINEN T. Quantitative photoacoustic tomography augmented with surface light measurements[J]. Biomedical Optics Express, 2017, 8(10): 4380-4395. doi: 10.1364/BOE.8.004380
    [36]
    LOU Y, NADVORETSKIY V, WANG K, et al.. Effect of rotating partial illumination on image reconstruction for optoacoustic breast tomography[J]. Proceedings of SPIE, 2015, 9323: 93233L.
    [37]
    LOU Y, WANG K, ORAEVSKY A A, et al. Impact of nonstationary optical illumination on image reconstruction in optoacoustic tomography[J]. Journal of the Optical Society of America A, 2016, 33(12): 2333-2347.
    [38]
    PARK S, ORAEVSKY A A, SU R, et al.. Compensation for non-uniform illumination and optical fluence attenuation in three-dimensional optoacoustic tomography of the breast[J]. Proceedings of SPIE, 2019, 10878: 108784X.
    [39]
    YU J, JUNG Y, KANG J, et al. Enhancement of photoacoustic signal using a novel light illumination improvement device: in vivo feasibility animal study[C]. Proceedings of 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3-6 Sept. 2014: 349-352.
    [40]
    YU J, SCHUMAN J S, LEE J K, et al. A light illumination enhancement device for photoacoustic imaging: in vivo animal study[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2017, 64(8): 1205-1211. doi: 10.1109/TUFFC.2017.2713599
    [41]
    LARNEY B M, REBLING J, CHEN ZH Y, et al. Uniform light delivery in volumetric optoacoustic tomography[J]. Journal of Biophotonics, 2019, 12(6): e201800387.
    [42]
    LI M C, LAN B X, LIU W, et al. Internal-illumination photoacoustic computed tomography[J]. Journal of Biomedical Optics, 2018, 23(3): 1-4.
    [43]
    JOHNSTONBAUGH K, AGRAWAL S, ABHISHEK D, et al.. Novel deep learning architecture for optical fluence dependent photoacoustic target localization[J]. Proceedings of SPIE, 2019, 10878: 108781L.
    [44]
    HARIRI A, ALIPOUR K, MANTRI Y, et al. Deep learning improves contrast in low-fluence photoacoustic imaging[J]. Biomedical Optics Express, 2020, 11(6): 3360-3373. doi: 10.1364/BOE.395683
    [45]
    CHEN T T, LU T, SONG SH Z, et al.. A deep learning method based on U-Net for quantitative photoacoustic imaging[J]. Proceedings of SPIE, 2020, 11240: 112403V.
    [46]
    GORE J C. Artificial intelligence in medical imaging[J]. Magnetic Resonance Imaging, 2020, 68: A1-A4. doi: 10.1016/j.mri.2019.12.006
    [47]
    王慧, 冯金顺, 程正兴. 基于局部路径特征信息神经网络的图像去噪[J]. 液晶与显示,2020,35(1):70-79. doi: 10.3788/YJYXS20203501.0070

    WANG H, FENG J SH, CHENG ZH X. Image denoising based on local path feature in formation neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(1): 70-79. (in Chinese) doi: 10.3788/YJYXS20203501.0070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article views(1512) PDF downloads(112) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return