Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Jin-yue, LYU Jun-peng, NI Zhen-hua. Highly sensitive infrared detector based on a two-dimensional heterojunction[J]. Chinese Optics, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139
Citation: ZHANG Jin-yue, LYU Jun-peng, NI Zhen-hua. Highly sensitive infrared detector based on a two-dimensional heterojunction[J]. Chinese Optics, 2021, 14(1): 87-99. doi: 10.37188/CO.2020-0139

Highly sensitive infrared detector based on a two-dimensional heterojunction

doi: 10.37188/CO.2020-0139
Funds:  Supported by National Basic Research & Development plan of China (No. 2017YFA0205700, No. 2019YFA0308000); National Natural Science Foundation of China (No. 61774034, No. 91963130)
More Information
  • Corresponding author: phyljp@seu.edu.cnzhni@seu.edu.cn
  • Received Date: 12 Aug 2020
  • Rev Recd Date: 07 Sep 2020
  • Available Online: 25 Dec 2020
  • Publish Date: 25 Jan 2021
  • To achieve weak signal detection, high sensitivity is required. Because of their strengths in optical and electrical properties such as wide spectral absorption, adjustable bandgap, and high carrier mobility, graphene, Transition Metal dichalcogenides (TMDs), Black Phosphorus (BP) and other two-dimensional (2D) materials have been used to fabricate infrared detectors. However, those 2D materials have disadvantages of weak light absorption, low carrier mobility and air instability, that restrict their applications in high-sensitivity infrared detection. Compared with single two-dimensional material, heterostructures consisting of two or more single 2D materials adopt the characteristics of each single material as well as some novel physical properties from heterojunctions/interfaces. In recent years, the heterostructure of 2D materials has been studied extensively in the field of high-sensitivity infrared detection. To gain a deep understanding of the factors affecting sensitivity, we provide a comprehensive review of the strategies that improve the sensitivity of infrared detectors and the development of high-sensitivity infrared detectors based on 2D heterojunctions in recent years. We summarize the figures of merit of these infrared detectors and identify the existing challenges impeding further improvements in sensitivity. Finally, by summarizing the challenges of future improving the sensitivity of infrared detection prospects for strategies to obtain high-sensitivity infrared detectors with good comprehensive performance and commercial applicability are presented with considerations for balancing the detector’s responsivity and response speed, large area two-dimensional heterojunction preparation, heterojunction interface optimization, and so forth.

     

  • loading
  • [1]
    WANG P, XIA H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396. doi: 10.1002/smll.201904396
    [2]
    WANG F K, ZHANG Y, GAO Y, et al. 2D metal Chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi: 10.1002/smll.201901347
    [3]
    CHEN H Y, LIU H, ZHANG ZH M, et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3): 403-433. doi: 10.1002/adma.201503534
    [4]
    WANG X D, SHEN H, CHEN Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm[J]. Advanced Science, 2019, 6(15): 1901050. doi: 10.1002/advs.201901050
    [5]
    ROGALSKI A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi: 10.1088/0034-4885/68/10/R01
    [6]
    LIN CH, ANSELM A, KUO C H, et al. Type-II InAs/InGaSb SL photodetectors[J]. Proceedings of SPIE, 2000, 3948: 133-144. doi: 10.1117/12.382112
    [7]
    GREIN C H, YOUNG P M, FLATTÉ M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. doi: 10.1063/1.360422
    [8]
    ROGALSKI A. Comparison of the performance of quantum well and conventional bulk infrared photodetectors[J]. Infrared Physics &Technology, 1997, 38(5): 295-310.
    [9]
    ZHANG Y G, GU Y, TIAN ZH B, et al. Wavelength extended 2.4 µm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations[J]. Infrared Physics &Technology, 2008, 51(4): 316-321.
    [10]
    RICHARDS P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24.
    [11]
    ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics &Technology, 2011, 54(3): 136-154.
    [12]
    TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558
    [13]
    JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181. doi: 10.1038/nmat4703
    [14]
    MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi: 10.1039/C4CS00102H
    [15]
    HU Y, CHEN T, WANG X Q, et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps[J]. Nano Research, 2017, 10(4): 1434-1447. doi: 10.1007/s12274-017-1525-3
    [16]
    HU Y, MAO L Y, YUAN X, et al. Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks[J]. Nano Research, 2020, 13(8): 2226-2232. doi: 10.1007/s12274-020-2841-6
    [17]
    HU Y, QI ZH H, LU J Y, et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151
    [18]
    WANG X X, HU Y, MO J B, et al. Arsenene: a potential therapeutic agent for acute Promyelocytic Leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13): 5151-5158. doi: 10.1002/anie.201913675
    [19]
    BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8
    [20]
    GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi: 10.1038/s41565-018-0348-z
    [21]
    CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor[J]. Nano Letters, 2012, 12(6): 3187-3192. doi: 10.1021/nl301164v
    [22]
    MATTHEISS L F. Band structures of transition-metal-dichalcogenide layer compounds[J]. Physical Review B, 1973, 8(8): 3719-3740. doi: 10.1103/PhysRevB.8.3719
    [23]
    CASTELLANOS-GOMEZ A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291. doi: 10.1021/acs.jpclett.5b01686
    [24]
    LONG M SH, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
    [25]
    NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for Graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458
    [26]
    ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of Graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d
    [27]
    SUN ZH H, LIU ZH K, LI J H, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. doi: 10.1002/adma.201202220
    [28]
    ZHANG Y ZH, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(1): 1811. doi: 10.1038/ncomms2830
    [29]
    KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi: 10.1038/nnano.2012.60
    [30]
    GROTEVENT M J, HAIL C U, YAKUNIN S, et al. Nanoprinted quantum dot-graphene photodetectors[J]. Advanced Optical Materials, 2019, 7(11): 1900019. doi: 10.1002/adom.201900019
    [31]
    KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi: 10.1038/nnano.2014.215
    [32]
    CLIFFORD J P, KONSTANTATOS G, JOHNSTON K W, et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors[J]. Nature Nanotechnology, 2009, 4(1): 40-44. doi: 10.1038/nnano.2008.313
    [33]
    KONSTANTATOS G. Current status and technological prospect of photodetectors based on two-dimensional materials[J]. Nature Communications, 2018, 9(1): 5266. doi: 10.1038/s41467-018-07643-7
    [34]
    NIKITSKIY I, GOOSSENS S, KUFER D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7(1): 11954. doi: 10.1038/ncomms11954
    [35]
    CHEN X Q, LIU X L, WU B, et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer[J]. Nano Letters, 2017, 17(10): 6391-6396. doi: 10.1021/acs.nanolett.7b03263
    [36]
    BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718. doi: 10.1039/C5CS00106D
    [37]
    TANAKA A, MATSUMOTO S, TSUKAMOTO N, et al. Infrared focal plane array incorporating silicon IC process compatible bolometer[J]. IEEE Transactions on Electron Devices, 1996, 43(11): 1844-1850. doi: 10.1109/16.543017
    [38]
    MATHER J C. Bolometers: ultimate sensitivity, optimization, and amplifier coupling[J]. Applied Optics, 1984, 23(4): 584-588. doi: 10.1364/AO.23.000584
    [39]
    解光勇. 光电探测器噪声特性分析[J]. 信息技术,2008(11):8-10. doi: 10.3969/j.issn.1009-2552.2008.11.003

    XIE G Y. Noise analysis for optoelectronic detector[J]. Information Technology, 2008(11): 8-10. (in Chinese) doi: 10.3969/j.issn.1009-2552.2008.11.003
    [40]
    王彦, 袁家虎. 一种提高CCD探测灵敏度的方法[J]. 光电工程,2000,27(6):5-8, 65. doi: 10.3969/j.issn.1003-501X.2000.06.002

    WANG Y, YUAN J H. A method for improving the CCD sensitivity[J]. Opto-Electronic Engineering, 2000, 27(6): 5-8, 65. (in Chinese) doi: 10.3969/j.issn.1003-501X.2000.06.002
    [41]
    SZE S M, NG K K. Physics of Semiconductor Devices[M]. New York: John Wiley & Sons, 2006.
    [42]
    LONG M SH, LIU E F, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi: 10.1021/acs.nanolett.5b04538
    [43]
    WANG L, JIE J SH, SHAO ZH B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919. doi: 10.1002/adfm.201500216
    [44]
    WU D, WANG Y G, ZENG L H, et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector[J]. ACS Photonics, 2018, 5(9): 3820-3827. doi: 10.1021/acsphotonics.8b00853
    [45]
    JIA CH, WU D, WU E P, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(13): 3817-3821. doi: 10.1039/C8TC06398B
    [46]
    HOLLENHORST J N. Ballistic avalanche photodiodes: ultralow noise avalanche diodes with nearly equal ionization probabilities[J]. Applied Physics Letters, 1986, 49(9): 516-518. doi: 10.1063/1.97106
    [47]
    JINDAL R P. Approaching fundamental limits on signal detection[J]. IEEE Transactions on Electron Devices, 1994, 41(11): 2133-2138. doi: 10.1109/16.333833
    [48]
    WANG Y G, HUANG X W, WU D, et al. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm[J]. Journal of Materials Chemistry C, 2018, 6(18): 4861-4865. doi: 10.1039/C8TC01237G
    [49]
    ZENG L H, LIN SH H, LOU ZH H, et al. Ultrafast and sensitive photodetector based on a PtSe2/Silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm[J]. NPG ASIA Materials, 2018, 10(4): 352-362. doi: 10.1038/s41427-018-0035-4
    [50]
    ZHANG T F, LI ZH P, WANG J ZH, et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction[J]. Scientific Reports, 2016, 6(1): 38569. doi: 10.1038/srep38569
    [51]
    XIAO P, MAO J, DING K, et al. Solution-processed 3D RGO-MoS2/Pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection[J]. Advanced Materials, 2018, 30(31): 1801729. doi: 10.1002/adma.201801729
    [52]
    WU E P, WU D, JIA CH, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared[J]. ACS Photonics, 2019, 6(2): 565-572. doi: 10.1021/acsphotonics.8b01675
    [53]
    HUO N J, GUPTA S, KONSTANTATOS G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Advanced Materials, 2017, 29(17): 1606576. doi: 10.1002/adma.201606576
    [54]
    YE L, WANG P, LUO W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60. doi: 10.1016/j.nanoen.2017.05.004
    [55]
    KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180. doi: 10.1002/adma.201402471
    [56]
    QI ZH Y, YANG T F, LI D, et al. High-responsivity two-dimensional p-Pbi2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect[J]. Materials Horizons, 2019, 6(7): 1474-1480. doi: 10.1039/C9MH00335E
    [57]
    GUO N, GONG F, LIU J K, et al. Hybrid WSe2-In2O3 phototransistor with ultrahigh detectivity by efficient suppression of dark currents[J]. ACS Applied Materials &Interfaces, 2017, 9(39): 34489-34496.
    [58]
    YEH C H, CHEN H C, LIN H C, et al. Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain[J]. ACS Nano, 2019, 13(3): 3269-3279. doi: 10.1021/acsnano.8b09032
    [59]
    LONG M SH, WANG Y, WANG P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS Nano, 2019, 13(2): 2511-2519.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views(2990) PDF downloads(431) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return