Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
CAI Huai-yu, HAN Xiao-yan, LOU Shi-liang, WANG Yi, CHEN Wen-guang, CHEN Xiao-dong. Speckle noise reduction in swept-source optical coherence tomography by retinal image registration[J]. Chinese Optics, 2021, 14(2): 289-297. doi: 10.37188/CO.2020-0130
Citation: CAI Huai-yu, HAN Xiao-yan, LOU Shi-liang, WANG Yi, CHEN Wen-guang, CHEN Xiao-dong. Speckle noise reduction in swept-source optical coherence tomography by retinal image registration[J]. Chinese Optics, 2021, 14(2): 289-297. doi: 10.37188/CO.2020-0130

Speckle noise reduction in swept-source optical coherence tomography by retinal image registration

Funds:  Supported by National Key R&D Program of China (No. 2017YFC0109901); Natural Science Foundation Project of Tianjin (No. 15JCQNJC14200)
More Information
  • Corresponding author: xyhan@tju.edu.cn
  • Received Date: 23 Jul 2020
  • Rev Recd Date: 03 Sep 2020
  • Available Online: 05 Mar 2021
  • Publish Date: 23 Mar 2021
  • The averaging of multiple B-Scans is an effective method of reducing speckle noise in Swept-Source Optical Coherence Tomography (SS-OCT) and obtaining clear structural information. However, physiological characteristics such as eye tremor, drift, micro-saccade, and the optical structure of an SS-OCT system cause geometric transformation between images, resulting in poor multi-frame averaging. In this paper, we propose a registration algorithm based on the combination of gray distribution information and target geometric information. This method extracts the region of interest containing target information using the average gray distribution of an image, and corrects the transformation of the image with the collective effect of the phase correlation algorithm and the gray projection algorithm based on the fitting of the curve of its segments. Then, the process is repeated with the upper boundary of the retinal image fitted as the feature points to determine the optimal rotation parameters. The translation parameters are re-estimated again to achieve the rigid registration of the image. Finally, a one-to-one mapping method of axial scanning is used to achieve the non-rigid registration of the image with the energy function as the constraint. Experiments on live rabbit eyes show that the averaged image has clear boundaries, enhanced structural information, and its signal-to-noise and contrast-to-noise ratios are more than doubled their previous values on average. The algorithm is suitable for the registration of B-Scan images with strong speckle noise and can meet the averaging needs of many types of OCT systems. It has high robustness and image registration accuracy.

     

  • loading
  • [1]
    SAHYOUN C C, SUBHASH H M, PERU D, et al. An experimental review of optical coherence tomography systems for noninvasive assessment of hard dental tissues[J]. Caries Research, 2019, 54(1): 43-54.
    [2]
    PASAOGLU I, SATANA B, ALTAN C, et al. Lamina cribrosa surface position in idiopathic intracranial hypertension with swept-source optical coherence tomography[J]. Indian Journal of Ophthalmology, 2019, 67(7): 1085-1088. doi: 10.4103/ijo.IJO_1736_18
    [3]
    PARK J H, YOO C, JUNG J H, et al. The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients[J]. Medicine, 2019, 98(1): e14044. doi: 10.1097/MD.0000000000014044
    [4]
    汪毅, 刘珊珊, 张玮茜, 等. 扫频光学相干层析角膜图像轮廓自动提取算法[J]. 物理学报,2019,68(20):204201. doi: 10.7498/aps.68.20190731

    WANG Y, LIU SH SH, ZHANG W Q, et al. Automatic contour extraction algorithm for swept-source optical coherence tomography cornea image[J]. Acta Physica Sinica, 2019, 68(20): 204201. (in Chinese) doi: 10.7498/aps.68.20190731
    [5]
    VIRA J, MARCHESE A, SINGH R B, et al. Swept-source optical coherence tomography imaging of the retinochoroid and beyond[J]. Expert Review of Medical Devices, 2020, 17(5): 413-426. doi: 10.1080/17434440.2020.1755256
    [6]
    LOU SH L, CHEN X D, HAN X Y, et al. Fast retinal segmentation based on the wave algorithm[J]. IEEE Access, 2020, 8: 53678-53686. doi: 10.1109/ACCESS.2020.2981206
    [7]
    SCHMITT J M, XIANG S H, YUNG K M, et al. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1): 95-105. doi: 10.1117/1.429925
    [8]
    蔡怀宇, 张玮茜, 陈晓冬, 等. 眼科光学相干层析成像的图像处理方法[J]. 中国光学,2019,12(4):731-740. doi: 10.3788/co.20191204.0731

    CAI H Y, ZHANG W Q, CHEN X D, et al. Image processing method for ophthalmic optical coherence tomography[J]. Chinese Optics, 2019, 12(4): 731-740. (in Chinese) doi: 10.3788/co.20191204.0731
    [9]
    JORGENSEN T M, THOMADSEN J, CHRISTENSEN U, et al. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples[J]. Journal of Biomedical Optics, 2007, 12(4): 041208. doi: 10.1117/1.2772879
    [10]
    SZKULMOWSKI M, WOJTKOWSKI M. Averaging techniques for OCT imaging[J]. Optics Express, 2013, 21(8): 9757-9773. doi: 10.1364/OE.21.009757
    [11]
    MARTINEZ-CONDE S, MACKNIK S L, HUBEL D H. The role of Fixational eye movements in visual perception[J]. Nature Reviews Neuroscience, 2004, 5(3): 229-240. doi: 10.1038/nrn1348
    [12]
    KLEIN T, HUBER R. High-speed OCT light sources and systems [Invited][J]. Biomedical Optics Express, 2017, 8(2): 828-859. doi: 10.1364/BOE.8.000828
    [13]
    余轮, 魏丽芳. 眼底图像配准技术研究进展[J]. 生物医学工程学杂志,2011,28(5):1043-1047.

    YU L, WEI L F. Progress of research in retinal image registration[J]. Journal of Biomedical Engineering, 2011, 28(5): 1043-1047. (in Chinese)
    [14]
    NIEMEIJER M, GARVIN M K, LEE K, et al. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching[J]. Proceedings of SPIE, 2009, 7259: 72591I.
    [15]
    NIEMEIJER M, LEE K, GARVIN M K, et al. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach[J]. Proceedings of SPIE, 2012, 8314: 83141A.
    [16]
    CHEN M, LANG A, YING H S, et al. Analysis of macular OCT images using deformable registration[J]. Biomedical Optics Express, 2014, 5(7): 2196-2214. doi: 10.1364/BOE.5.002196
    [17]
    KHANSARI M M, ZHANG J, QIAO Y CH, et al. Automated deformation-based analysis of 3D optical coherence tomography in diabetic retinopathy[J]. IEEE Transactions on Medical Imaging, 2020, 39(1): 236-245. doi: 10.1109/TMI.2019.2924452
    [18]
    CHENG J, DUAN L X, WONG D W K, et al.. Speckle reduction in optical coherence tomography by image registration and matrix completion[C]. Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2014: 162-169.
    [19]
    LEE S, LEBED E, SARUNIC M V, et al. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 609-617. doi: 10.1109/TBME.2014.2361778
    [20]
    LEZAMA J, MUKHERJEE D, MCNABB R P, et al. Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes[J]. Biomedical Optics Express, 2016, 7(12): 4827-4846. doi: 10.1364/BOE.7.004827
    [21]
    DU X Y, GONG L, SHI F, et al.. Non-rigid Registration of Retinal OCT Images Using Conditional Correlation Ratio[M]. CARDOSO M J, ARBEL T, MELBOURNE A, et al.. Fetal, Infant and Ophthalmic Medical Image Analysis. Cham: Springer, 2017: 159-167.
    [22]
    OJANSIVU V, HEIKKILA J. Image registration using blur-invariant phase correlation[J]. IEEE Signal Processing Letters, 2007, 14(7): 449-452. doi: 10.1109/LSP.2006.891338
    [23]
    孙辉, 马天玮. 基于相位相关的目标图像亚像元运动参数估计[J]. 液晶与显示,2011,26(6):858-862. doi: 10.3788/YJYXS20112606.0858

    SUN H, MA T W. Sub-pixel motion estimation based on phase-only correlation[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(6): 858-862. (in Chinese) doi: 10.3788/YJYXS20112606.0858
    [24]
    万钇良, 王建立, 张楠, 等. 一种基于相位相关与子图像的偏振图像配准方法[J]. 液晶与显示,2019,34(5):530-536. doi: 10.3788/YJYXS20193405.0530

    WAN Y L, WANG J L, ZHANG N, et al. Polarized image registration method based on phase correlation and sub-graph[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 530-536. (in Chinese) doi: 10.3788/YJYXS20193405.0530
    [25]
    PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639. doi: 10.1109/34.56205
    [26]
    王亚强, 陈波. 一种改进的各向异性扩散超声图像去噪算法[J]. 液晶与显示,2015,30(2):310-316. doi: 10.3788/YJYXS20153002.0310

    WANG Y Q, CHEN B. Improved anisotropic diffusion ultrasound image denoising algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2): 310-316. (in Chinese) doi: 10.3788/YJYXS20153002.0310
    [27]
    PUVANATHASAN P, BIZHEVA K. Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images[J]. Optics Express, 2009, 17(2): 733-746. doi: 10.1364/OE.17.000733
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(1569) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return