Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
YU Dan, SUN Yan, FENG Zhi-shu, DAI Yu-yin, CHEN An-min, JIN Ming-xing. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118
Citation: YU Dan, SUN Yan, FENG Zhi-shu, DAI Yu-yin, CHEN An-min, JIN Ming-xing. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118

Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy

doi: 10.37188/CO.2020-0118
Funds:  Supported by National Natural Science Foundation of China (No. 11674128, No. 11674124, No. 11974138); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province (No. JJKH20200937KJ)
More Information
  • Corresponding author: mxjin@jlu.edu.cn
  • Received Date: 07 Jul 2020
  • Rev Recd Date: 12 Aug 2020
  • Available Online: 05 Feb 2021
  • Publish Date: 23 Mar 2021
  • The signal intensity of Laser-Induced Breakdown Spectroscopy (LIBS) can be improved by increasing sample temperature and confining space confinement. The combination of the two techniques can further improve the spectral intensity of LIBS. In this paper, the effects of increasing a sample’s temperature and spatial confinement on LIBS are studied in air, and the time-resolved spectra of laser-induced aluminum plasma are measured. The experimental results show that increasing the sample’s temperature can increase the signal intensity of LIBS since a sample with a higher temperature can absorb more laser energy; when the cylindrical cavity is used to confine the plasma, the spectral emission is further improved. The effect of the combination of the two experimental conditions is that the signal intensity of LIBS is significantly stronger than that of either condition alone. The intensity of Al (I) 396.2 nm increases to 1.4 times at 200 °C with higher temperature conditions alone, 1.3 times when spatial confinement is applied alone, and 2.1 times at 200 °C with spatial confinement. The emission intensity with the combined effects is higher than the sum of that under the two individual conditions. The effect of the combination is mainly based on the fact that laser irradiation of the sample under a higher temperature generates stronger shock waves that can more effectively compress a larger-sized plasma plume, thereby further improving the spectral intensity of LIBS.

     

  • loading
  • [1]
    刘津, 孙通, 甘兰萍. 基于内标法和CARS变量优选的倍硫磷含量LIBS检测[J]. 发光学报,2018,39(5):737-744. doi: 10.3788/fgxb20183905.0737

    LIU J, SUN T, GAN L P. Detection of fentshion content by LIBS combined with internal standard and CARS variable selection method[J]. Chinese Journal of Luminescence, 2018, 39(5): 737-744. (in Chinese) doi: 10.3788/fgxb20183905.0737
    [2]
    王慧丽, 王建伟, 周强, 等. 激光诱导击穿光谱法定量分析水泥中的铜元素[J]. 发光学报,2017,38(11):1553-1558. doi: 10.3788/fgxb20173811.1553

    WANG H L, WANG J W, ZHOU Q, et al. Quantitative analysis of Cu in cement by laser induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(11): 1553-1558. (in Chinese) doi: 10.3788/fgxb20173811.1553
    [3]
    李占锋, 王芮雯, 邓琥, 等. 黄连、附片和茯苓内铜元素激光诱导击穿光谱分析[J]. 发光学报,2016,37(1):100-105. doi: 10.3788/fgxb20163701.0100

    LI ZH F, WANG R W, DENG H, et al. Laser induced breakdown spectroscopy of Cu in coptis chinensis, aconite root and poria cocos[J]. Chinese Journal of Luminescence, 2016, 37(1): 100-105. (in Chinese) doi: 10.3788/fgxb20163701.0100
    [4]
    李安, 王亮伟, 郭帅, 等. 激光诱导击穿光谱增强机制及技术研究进展[J]. 中国光学,2017,10(5):619-640. doi: 10.3788/co.20171005.0619

    LI A, WANG L W, GUO SH, et al. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. (in Chinese) doi: 10.3788/co.20171005.0619
    [5]
    李昂泽, 王宪双, 徐向君, 等. 激光诱导击穿光谱技术对烟草快速分类研究[J]. 中国光学,2019,12(5):1139-1146. doi: 10.3788/co.20191205.1139

    LI A Z, WANG X SH, XU X J, et al. Fast classification of tobacco based on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2019, 12(5): 1139-1146. (in Chinese) doi: 10.3788/co.20191205.1139
    [6]
    王宪双, 郭帅, 徐向君, 等. 基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究[J]. 中国光学,2019,12(4):888-895. doi: 10.3788/co.20191204.0888

    WANG X SH, GUO SH, XU X J, et al. Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and Raman spectroscopy[J]. Chinese Optics, 2019, 12(4): 888-895. (in Chinese) doi: 10.3788/co.20191204.0888
    [7]
    侯冠宇, 王平, 佟存柱. 激光诱导击穿光谱技术及应用研究进展[J]. 中国光学,2013,6(4):490-500.

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese)
    [8]
    WANG Y, CHEN A M, ZHANG D, et al. Enhanced optical emission in laser-induced breakdown spectroscopy by combining femtosecond and nanosecond laser pulses[J]. Physics of Plasmas, 2020, 27(2): 023507. doi: 10.1063/1.5131772
    [9]
    GUO L B, HU W, ZHANG B Y, et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 2011, 19(15): 14067-14075. doi: 10.1364/OE.19.014067
    [10]
    LU Y, ZHOU Y S, QIU W, et al. Magnetic field enhancement for femtosecond-laser-ablation mass spectrometry in ambient environments[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(11): 2303-2306. doi: 10.1039/C5JA00225G
    [11]
    WANG Y R, JIANG Y H, HE X Y, et al. Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 150: 9-17. doi: 10.1016/j.sab.2018.10.001
    [12]
    LIU L, LI S, HE X N, et al. Flame-enhanced laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(7): 7686-7693. doi: 10.1364/OE.22.007686
    [13]
    YANG F, JIANG L, WANG S M, et al. Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2[J]. Optics &Laser Technology, 2017, 93: 194-200.
    [14]
    YANG X Y, HAO ZH Q, SHEN M, et al. Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 2017, 163: 127-131. doi: 10.1016/j.talanta.2016.10.094
    [15]
    王旭朝, 郝中骐, 郭连波, 等. 基于共振激发的激光诱导击穿光谱技术研究进展[J]. 光谱学与光谱分析,2015,35(5):1159-1164.

    WANG X ZH, HAO ZH Q, GUO L B, et al. Research progress on laser-induced breakdown spectroscopy based on resonance excitation[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1159-1164. (in Chinese)
    [16]
    SHEN X K, SUN J, LING H, et al. Spectroscopic study of laser-induced Al plasmas with cylindrical confinement[J]. Journal of Applied Physics, 2007, 102(9): 093301. doi: 10.1063/1.2801405
    [17]
    WANG Y, CHEN A M, SUI L ZH, et al. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(10): 1974-1977. doi: 10.1039/C6JA00260A
    [18]
    GAO X, LIU L, SONG CH, et al. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma[J]. Journal of Physics D:Applied Physics, 2015, 48(17): 175205. doi: 10.1088/0022-3727/48/17/175205
    [19]
    SANGINÉS R, SOBRAL H, ALVAREZ-ZAUCO E. Emission enhancement in laser-produced plasmas on preheated targets[J]. Applied Physics B, 2012, 108(4): 867-873. doi: 10.1007/s00340-012-5130-6
    [20]
    LIU Y, TONG Y, LI S Y, et al. Effect of sample temperature on laser-induced semiconductor plasma spectroscopy[J]. Chinese Optics Letters, 2016, 14(12): 123001. doi: 10.3788/COL201614.123001
    [21]
    LIU Y, TONG Y, WANG Y, et al. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. doi: 10.1088/2058-6272/aa8acc
    [22]
    齐洪霞, 赵亮, 金川琳, 等. 样品温度对纳秒激光诱导铝等离子体光谱强度的影响[J]. 中国激光,2019,46(2):0211002. doi: 10.3788/CJL201946.0211002

    QI H X, ZHAO L, JIN CH L, et al. Influence of sample temperature on spectral intensity of nanosecond laser-induced aluminum plasma[J]. Chinese Journal of Lasers, 2019, 46(2): 0211002. (in Chinese) doi: 10.3788/CJL201946.0211002
    [23]
    SU X J, ZHOU W D, QIAN H G. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2356-2361. doi: 10.1039/C4JA00296B
    [24]
    GUO L B, ZHANG B Y, HE X N, et al. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation[J]. Optics Express, 2012, 20(2): 1436-1443. doi: 10.1364/OE.20.001436
    [25]
    HOU Z Y, WANG ZH, LIU J M, et al. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy[J]. Optics Express, 2014, 22(11): 12909-12914. doi: 10.1364/OE.22.012909
    [26]
    SANGINÉS R, SOBRAL H, ALVAREZ-ZAUCO E. The effect of sample temperature on the emission line intensification mechanisms in orthogonal double-pulse laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 68: 40-45. doi: 10.1016/j.sab.2012.01.011
    [27]
    UJIHARA K. Reflectivity of metals at high temperatures[J]. Journal of Applied Physics, 1972, 43(5): 2376-2383. doi: 10.1063/1.1661506
    [28]
    ZHANG D, CHEN A M, WANG Q Y, et al. Influence of distance between sample surface and focal point on the expansion dynamics of laser-induced silicon plasma under different sample temperatures in air[J]. Optik, 2020, 202: 163511. doi: 10.1016/j.ijleo.2019.163511
    [29]
    王秋云, 陈安民, 李苏宇, 等. 圆柱形空间约束腔直径和深度对激光诱导硅等离子体光谱的影响[J]. 光子学报,2018,47(8):0847007. doi: 10.3788/gzxb20184708.0847007

    WANG Q Y, CHEN A M, LI S Y, et al. Influence of diameter and depth on spatially confined laser-induced silicon plasma spectroscopy with cylindrical cavity[J]. Acta Photonica Sinica, 2018, 47(8): 0847007. (in Chinese) doi: 10.3788/gzxb20184708.0847007
    [30]
    FU Y T, HOU Z Y, WANG ZH. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3): 3055-3066. doi: 10.1364/OE.24.003055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1101) PDF downloads(97) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return