Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LI Chen-yu, QU Liang, GAO Fei, DUAN Hong-ying, GUAN Ming, LIU Han-wen, ZOU Fei-chi. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. doi: 10.37188/CO.2020-0112
Citation: LI Chen-yu, QU Liang, GAO Fei, DUAN Hong-ying, GUAN Ming, LIU Han-wen, ZOU Fei-chi. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. doi: 10.37188/CO.2020-0112

Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy

doi: 10.37188/CO.2020-0112
More Information
  • Corresponding author: lionat528@hotmail.com
  • Received Date: 30 Jun 2020
  • Rev Recd Date: 27 Jul 2020
  • Available Online: 18 Mar 2021
  • Publish Date: 01 Dec 2020
  • Composition analysis of the surface and depth distribution of bronze artifacts excavated from the Chu Tomb in Guozhuang Shangcai, Henan Province and ceramic tiles of Lingzhaoxuan from the Palace Museum are carried out by laser-induced breakdown spectroscopy and laser scanning confocal microscopy. Studies have shown that the elemental distribution of the corroded layer on the surface of bronze is uneven. This corrosion might originate from the surrounding soil environment and surrounding artifacts or ion migration from the artifacts’ insides to their outsides. Luckily, the composition of bronze is relatively simple. The corrosion mechanism of the corroded layer can be understood by analyzing the depth distribution of the composition in bronze, thereby providing a scientific method for its protection. The elemental distribution of ceramic is homogeneous in transparent and colored glaze. Colored glaze includes Boron (B), which could effectively reduce its melting temperature range and surface tension, but there is no boron (B) in transparent glaze. Furthermore, confocal microscope tests of the depth of erosion combined with its spectra can be used to estimate the approximate thickness of different glaze layers.

     

  • loading
  • [1]
    陈卉. 青铜器和陶瓷在文化艺术形态上的比较[J]. 艺苑,2012(1):93-98.

    CHEN H. A comparison of the cultural and artistic forms of bronzes and ceramics[J]. Forum of Arts, 2012(1): 93-98. (in Chinese)
    [2]
    任佳, 高勋. 飞秒细丝-纳秒激光诱导击穿光谱技术对土壤重金属Pb元素检测[J]. 光学 精密工程,2019,27(5):1069-1074. doi: 10.3788/OPE.20192705.1069

    REN J, GAO X. Detection of heavy metal Pb in soil by filament-nanosecond laser induced breakdown spectroscopy[J]. Optics and Precision Engineering, 2019, 27(5): 1069-1074. (in Chinese) doi: 10.3788/OPE.20192705.1069
    [3]
    王慧丽, 王建伟, 周强, 等. 激光诱导击穿光谱法定量分析水泥中的铜元素[J]. 发光学报,2017,38(11):1553-1558. doi: 10.3788/fgxb20173811.1553

    WANG H L, WANG J W, ZHOU Q, et al. Quantitative analysis of Cu in cement by laser induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(11): 1553-1558. (in Chinese) doi: 10.3788/fgxb20173811.1553
    [4]
    刘津, 孙通, 甘兰萍. 基于内标法和CARS变量优选的倍硫磷含量LIBS检测[J]. 发光学报,2018,39(5):737-744. doi: 10.3788/fgxb20183905.0737

    LIU J, SUN T, GAN L P. Detection of fenthion content by LIBS combined with internal standard and CARS variable selection method[J]. Chinese Journal of Luminescence, 2018, 39(5): 737-744. (in Chinese) doi: 10.3788/fgxb20183905.0737
    [5]
    ALBERGHINA M F, BARRACO R, BRAI M, et al. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2011, 66(2): 129-137. doi: 10.1016/j.sab.2010.12.010
    [6]
    ABERKANE S M, ABDELHAMID M, YAHIAOUI K, et al. Depth profiling of alumina thin films using laser induced breakdown spectroscopy: structural and morphological dependence[J]. Thin Solid Films, 2018, 653: 293-300. doi: 10.1016/j.tsf.2018.03.052
    [7]
    KE CH, LI Y, LIU X, et al. Application of laser induced breakdown spectroscopy for fast depth profiling analysis of type 316 stainless steel parts corroded by liquid lithium[J]. Fusion Engineering and Design, 2018, 136: 1647-1652. doi: 10.1016/j.fusengdes.2018.07.004
    [8]
    MATEO M, BECERRA J, ZADERENKO A P, et al. Laser-induced breakdown spectroscopy applied to the evaluation of penetration depth of bactericidal treatments based on silver nanoparticles in limestones[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 152: 44-51. doi: 10.1016/j.sab.2018.11.010
    [9]
    SUCHOŇOVÁ M, VEIS P, KARHUNEN J, et al. Determination of deuterium depth profiles in fusion-relevant wall materials by nanosecond LIBS[J]. Nuclear Materials and Energy, 2017, 12: 611-616. doi: 10.1016/j.nme.2017.05.013
    [10]
    张晓梅, 原思训, 刘煜, 等. 周原遗址及?国墓地出土青铜器锈蚀研究[J]. 文物保护与考古科学,1999,11(2):7-18.

    ZHANG X M, YUAN S X, LIU Y, et al. Research on the corrosion of bronzes from Zhouyuan site and Yu State cemeteries[J]. Sciences of Conservation and Archaeology, 1999, 11(2): 7-18. (in Chinese)
    [11]
    胡志孟, 邹惠良, 彭适凡, 等. 新干商代不锈青铜器的表层元素研究[J]. 兵器材料科学与工程,1997,20(6):44-48.

    HU ZH M, ZOU H L, PENG SH F, et al. Study on surface layer elements for stainless bronze ware of Xingan in Shang Dynasty[J]. Ordnance Material Science and Engineering, 1997, 20(6): 44-48. (in Chinese)
    [12]
    何文权, 熊樱菲. 古陶瓷元素成分分析技术定量方法的探讨[J]. 文物保护与考古科学,2003,15(3):13-20. doi: 10.3969/j.issn.1005-1538.2003.03.003

    HE W Q. XIONG Y F. Quantitative analysis of ancient ceramic by X-ray spectroscopy techniques[J]. Sciences of Conservation and Archaeology, 2003, 15(3): 13-20. (in Chinese) doi: 10.3969/j.issn.1005-1538.2003.03.003
    [13]
    郑乃章, 吴军明, 吴隽, 等. 古陶瓷研究和鉴定中的化学组成仪器分析法[J]. 中国陶瓷,2007,43(5):52-54. doi: 10.3969/j.issn.1001-9642.2007.05.015

    ZHENG N ZH, WU J M, WU J, et al. Chemical composition analytical methods be instruments on the identifications and studies of ancient ceramics by instruments[J]. China Ceramics, 2007, 43(5): 52-54. (in Chinese) doi: 10.3969/j.issn.1001-9642.2007.05.015
    [14]
    阎宏涛, 昌征. 激光诱导击穿光谱分析法及其在彩绘文物分析与表征中的应用[J]. 西北大学学报(自然科学版),2009,39(4):586-590.

    YAN H T, CHANG ZH. The laser-induced breakdown spectroscopy and its applications in the polychrome cultural relics[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(4): 586-590. (in Chinese)
    [15]
    李涛. 山东蓬莱出土古代青铜器的腐蚀研究[D]. 合肥: 中国科学技术大学, 2007.

    LI T. The corrosion study of ancient bronzes excavated from penglai, Shandong province[D]. Hefei: University of Science and Technology of China, 2007. (in Chinese).
    [16]
    王菊琳, 许淳淳. 青铜在土壤中局部腐蚀过程的化学行为[J]. 化工学报,2004,55(7):1135-1139. doi: 10.3321/j.issn:0438-1157.2004.07.020

    WANG J L, XU CH CH. Chemical behavior of bronze localized corrosion in soil[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(7): 1135-1139. (in Chinese) doi: 10.3321/j.issn:0438-1157.2004.07.020
    [17]
    汤琪, 王菊琳, 马菁毓. 土壤腐蚀过程中高锡青铜的形貌变化和元素迁移[J]. 中国有色金属学报,2011,21(12):3175-3181.

    TANG Q, WANG J L, MA J Y. Morphology change and elements migration of bronze with high tin content after soil corrosion[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(12): 3175-3181. (in Chinese)
    [18]
    孙晓强. 青铜器的腐蚀与保护探讨[J]. 文物世界,2002(6):56-60. doi: 10.3969/j.issn.1009-1092.2002.06.022

    SUN X Q. A probe into the corrosion and the protection of bronzes[J]. World of Antiquity, 2002(6): 56-60. (in Chinese) doi: 10.3969/j.issn.1009-1092.2002.06.022
    [19]
    刘薇, 陈建立. 古代青铜器表面高锡锈层研究综述[J]. 中国国家博物馆馆刊,2019(5):146-160.

    LIU W, CHEN J L. The advances in the study of tin-rich patina on the surface of ancient bronzes[J]. Journal of National Museum of China, 2019(5): 146-160. (in Chinese)
    [20]
    杨菊. 赤峰地区青铜时代晚期铜器的科学分析研究[D]. 北京: 北京科技大学, 2015.

    YANG J. Scientific study on the late bronze age bronzes from Chifeng region[D]. Beijing: University of Science and Technology Beijing, 2015. (in Chinese).
    [21]
    THORNTON C P, REHREN T, PIGOTT V C. The production of speiss (iron arsenide) during the early bronze age in Iran[J]. Journal of Archaeological Science, 2009, 36(2): 308-316. doi: 10.1016/j.jas.2008.09.017
    [22]
    REHREN T, BOSCHER L, PERNICKA E. Large scale smelting of speiss and arsenical copper at early bronze age Arisman, Iran[J]. Journal of Archaeological Science, 2012, 39(6): 1717-1727. doi: 10.1016/j.jas.2012.01.009
    [23]
    魏国锋. 古代青铜器矿料来源与产地研究的新进展[D]. 合肥: 中国科学技术大学, 2007.

    WEI G F. New progress in the study of the origin and origin of ancient bronze ores[D]. Hefei: University of Science and Technology of China, 2007. (in Chinese)
    [24]
    李冬玲, 张勇, 鹿锋华. 激光诱导击穿光谱法对焊接接头表面渗铜区铜元素的深度分布分析[J]. 冶金分析,2015,35(1):19-25.

    LI D L, ZHANG Y, LU F H. Depth distribution analysis of copper in copper infiltration zone of welding joint surface by laser induced breakdown spectrometry[J]. Metallurgical Analysis, 2015, 35(1): 19-25. (in Chinese)
    [25]
    段鸿莺, 赵鹏, 黄超, 等. 故宫博物院灵沼轩陶瓷砖的分析研究[J]. 故宫学刊,2019:524-535.

    DUAN H Y, ZHAO P, HUANG CH, et al. Analysis and research on Lingzhaoxuan ceramic tiles in the palace museum[J]. Journal of Gugong Studies, 2019: 524-535. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article views(1279) PDF downloads(123) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return