Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Yun-kun, LI Yao-long, GAO Yu-nan. Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides[J]. Chinese Optics, 2021, 14(1): 18-42. doi: 10.37188/CO.2020-0106
Citation: WANG Yun-kun, LI Yao-long, GAO Yu-nan. Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides[J]. Chinese Optics, 2021, 14(1): 18-42. doi: 10.37188/CO.2020-0106

Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides

doi: 10.37188/CO.2020-0106
Funds:  Supported by National Key Research and Development Project (No. 2018YFA0306302); National Natural Science Foundation of China (No. 61875002)
More Information
  • Corresponding author: gyn@pku.edu.cn
  • Received Date: 15 Jun 2020
  • Rev Recd Date: 27 Jul 2020
  • Available Online: 05 Jan 2021
  • Publish Date: 25 Jan 2021
  • Because of their unique physical properties, the monolayer and few-layer two-dimensional transition metal chalcogenides with atomic-level thickness are expected to play an important role in the next generation of optoelectronic devices. However, defects in two-dimensional materials affect their properties to a great extent. On one hand, defects reduce the fluorescence quantum efficiency, carrier mobility and other important device parameters. On the other hand, the control and utilization of defects have given birth to new techniques such as using single-photon sources. Therefore, it is very important to characterize, understand, handle and control the defects in two-dimensional materials. In this review, the research progress on defects and its related carrier dynamics in two-dimensional transition metal chalcogenides is summarized. This paper aims to sort out the great influence of defects and their related ultrafast dynamics on material performance in two-dimensional transition metal chalcogenides, and to support studies on fundamental physical properties and high-performance optoelectronic devices.

     

  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [2]
    HAN P, WANG X K, ZHANG Y. Time-resolved terahertz spectroscopy studies on 2D van der Waals materials[J]. Advanced Optical Materials, 2020, 8(3): 1900533. doi: 10.1002/adom.201900533
    [3]
    MOUNET N, GIBERTINI M, SCHWALLER P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds[J]. Nature Nanotechnology, 2018, 13(3): 246-252. doi: 10.1038/s41565-017-0035-5
    [4]
    CASTELLANOS-GOMEZ A. Why all the fuss about 2D semiconductors?[J]. Nature Photonics, 2016, 10(4): 202-204. doi: 10.1038/nphoton.2016.53
    [5]
    AJAYAN P, KIM P, BANERJEE K. Two-dimensional van der Waals materials[J]. Physics Today, 2016, 69(9): 38-44. doi: 10.1063/PT.3.3297
    [6]
    BERKELBACH T C, REICHMAN D R. Optical and excitonic properties of atomically thin transition-metal dichalcogenides[J]. Annual Review of Condensed Matter Physics, 2018, 9(1): 379-396. doi: 10.1146/annurev-conmatphys-033117-054009
    [7]
    GUO B, XIAO Q L, WANG SH H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J]. Laser &Photonics Reviews, 2019, 13(12): 1800327.
    [8]
    KANG S, LEE D, KIM J, et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge[J]. 2D Materials, 2020, 7(2): 022003. doi: 10.1088/2053-1583/ab6267
    [9]
    MUELLER T, MALIC E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors[J]. npj 2D Materials and Applications, 2018, 2(1): 29. doi: 10.1038/s41699-018-0074-2
    [10]
    TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558
    [11]
    XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. doi: 10.1038/nphoton.2014.271
    [12]
    MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805
    [13]
    ROLDÁN R, SILVA-GUILLÉN J A, LÓPEZ-SANCHO M P, et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M= Mo, W and X= S, Se)[J]. Annalen der Physik, 2014, 526(9-10): 347-357. doi: 10.1002/andp.201400128
    [14]
    RUPPERT C, ASLAN O B, HEINZ T F. Optical properties and band gap of single- and few-layer MoTe2 crystals[J]. Nano Letters, 2014, 14(11): 6231-6236. doi: 10.1021/nl502557g
    [15]
    SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. doi: 10.1021/nl903868w
    [16]
    ZHAO W J, GHORANNEVIS Z, CHU L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2013, 7(1): 791-797. doi: 10.1021/nn305275h
    [17]
    CHERNIKOV A, BERKELBACH T C, HILL H M, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 076802. doi: 10.1103/PhysRevLett.113.076802
    [18]
    MAK K F, HE K L, LEE C, et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 2013, 12(3): 207-211. doi: 10.1038/nmat3505
    [19]
    PLECHINGER G, NAGLER P, ARORA A, et al. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide[J]. Nature Communications, 2016, 7(1): 12715. doi: 10.1038/ncomms12715
    [20]
    ROSS J S, WU S F, YU H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nature Communications, 2013, 4(1): 1474. doi: 10.1038/ncomms2498
    [21]
    STEINHOFF A, FLORIAN M, SINGH A, et al. Biexciton fine structure in monolayer transition metal dichalcogenides[J]. Nature Physics, 2018, 14(12): 1199-1204. doi: 10.1038/s41567-018-0282-x
    [22]
    YOU Y M, ZHANG X X, BERKELBACH T C, et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 2015, 11(6): 477-481. doi: 10.1038/nphys3324
    [23]
    LI ZH P, WANG T M, LU ZH G, et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2[J]. Nature Communications, 2018, 9(1): 3719. doi: 10.1038/s41467-018-05863-5
    [24]
    KUMAR N, NAJMAEI S, CUI Q N, et al. Second harmonic microscopy of monolayer MoS2[J]. Physical Review B, 2013, 87(16): 161403. doi: 10.1103/PhysRevB.87.161403
    [25]
    LI Y L, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation[J]. Nano Letters, 2013, 13(7): 3329-3333. doi: 10.1021/nl401561r
    [26]
    MALARD L M, ALENCAR T V, BARBOZA A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 2013, 87(20): 201401. doi: 10.1103/PhysRevB.87.201401
    [27]
    CAO T, WANG G, HAN W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3(1): 887. doi: 10.1038/ncomms1882
    [28]
    MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96
    [29]
    ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8): 490-493. doi: 10.1038/nnano.2012.95
    [30]
    UBRIG N, PONOMAREV E, ZULTAK J, et al. Design of van der Waals interfaces for broad-spectrum optoelectronics[J]. Nature Materials, 2020, 19(3): 299-304. doi: 10.1038/s41563-019-0601-3
    [31]
    RIVERA P, SCHAIBLEY J R, JONES A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications, 2015, 6(1): 6242. doi: 10.1038/ncomms7242
    [32]
    ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M, et al. Resonantly hybridized excitons in Moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. doi: 10.1038/s41586-019-0986-9
    [33]
    JIN CH H, REGAN E C, YAN A M, et al. Observation of Moire excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80. doi: 10.1038/s41586-019-0976-y
    [34]
    TRAN K, MOODY G, WU F CH, et al. Evidence for Moire excitons in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 71-75. doi: 10.1038/s41586-019-0975-z
    [35]
    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi: 10.1038/nnano.2010.279
    [36]
    BAO W ZH, CAI X H, KIM D, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects[J]. Applied Physics Letters, 2013, 102(4): 042104. doi: 10.1063/1.4789365
    [37]
    BIE Y Q, GROSSO G, HEUCK M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits[J]. Nature Nanotechnology, 2017, 12(12): 1124-1129. doi: 10.1038/nnano.2017.209
    [38]
    XIE Y, ZHANG B, WANG SH X, et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm[J]. Advanced Materials, 2017, 29(17): 1605972. doi: 10.1002/adma.201605972
    [39]
    LIU CH H, CLARK G, FRYETT T, et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode[J]. Nano Letters, 2017, 17(1): 200-205. doi: 10.1021/acs.nanolett.6b03801
    [40]
    PU J, TAKENOBU T. Monolayer transition metal dichalcogenides as light sources[J]. Advanced Materials, 2018, 30(33): 1707627. doi: 10.1002/adma.201707627
    [41]
    GE X CH, MINKOV M, FAN SH H, et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide[J]. npj 2D Materials and Applications, 2019, 3(1): 16. doi: 10.1038/s41699-019-0099-1
    [42]
    LI Y ZH, ZHANG J X, HUANG D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 2017, 12(10): 987-992. doi: 10.1038/nnano.2017.128
    [43]
    PAIK E Y, ZHANG L, BURG G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 2019, 576(7785): 80-84. doi: 10.1038/s41586-019-1779-x
    [44]
    WU S F, BUCKLEY S, SCHAIBLEY J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 2015, 520(7545): 69-72. doi: 10.1038/nature14290
    [45]
    FAVRON A, GAUFRÈS E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. doi: 10.1038/nmat4299
    [46]
    NACLERIO A E, ZAKHAROV D N, KUMAR J, et al. Visualizing oxidation mechanisms in few-layered black phosphorus via in situ transmission electron microscopy[J]. ACS Applied Materials &Interfaces, 2020, 12(13): 15844-15854.
    [47]
    NAN H Y, GUO S J, CAI SH, et al. Producing air-stable inse nanosheet through mild oxygen plasma treatment[J]. Semiconductor Science and Technology, 2018, 33(7): 074002. doi: 10.1088/1361-6641/aac3e6
    [48]
    HUANG Y, SUTTER E, SHI N N, et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials[J]. ACS Nano, 2015, 9(11): 10612-10620. doi: 10.1021/acsnano.5b04258
    [49]
    HUANG Y, PAN Y H, YANG R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nature Communications, 2020, 11(1): 2453. doi: 10.1038/s41467-020-16266-w
    [50]
    LIU F, WU W J, BAI Y S, et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J]. Science, 2020, 367(6480): 903-906. doi: 10.1126/science.aba1416
    [51]
    SHIM J, BAE S H, KONG W, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials[J]. Science, 2018, 362(6415): 665-670. doi: 10.1126/science.aat8126
    [52]
    BERNAL M M, ÁLVAREZ L, GIOVANELLI E, et al. Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation[J]. 2D Materials, 2016, 3(3): 035014. doi: 10.1088/2053-1583/3/3/035014
    [53]
    JAWAID A, NEPAL D, PARK K, et al. Mechanism for liquid phase exfoliation of MoS2[J]. Chemistry of Materials, 2016, 28(1): 337-348. doi: 10.1021/acs.chemmater.5b04224
    [54]
    QI ZH H, HU Y, JIN ZH, et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12087-12090. doi: 10.1039/C9CP01052A
    [55]
    SHREE S, GEORGE A, LEHNERT T, et al. High optical quality of MoS2 monolayers grown by chemical vapor deposition[J]. 2D Materials, 2019, 7(1): 015011. doi: 10.1088/2053-1583/ab4f1f
    [56]
    YU H, LIAO M ZH, ZHAO W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007. doi: 10.1021/acsnano.7b03819
    [57]
    HU Y, CHEN T, WANG X Q, et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps[J]. Nano Research, 2017, 10(4): 1434-1447. doi: 10.1007/s12274-017-1525-3
    [58]
    CHEN M W, OVCHINNIKOV D, LAZAR S, et al. Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy[J]. ACS Nano, 2017, 11(6): 6355-6361. doi: 10.1021/acsnano.7b02726
    [59]
    HU Y, QI ZH H, LU J Y, et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151
    [60]
    FU D Y, ZHAO X X, ZHANG Y Y, et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride[J]. Journal of the American Chemical Society, 2017, 139(27): 9392-9400. doi: 10.1021/jacs.7b05131
    [61]
    NAKANO M, WANG Y, KASHIWABARA Y, et al. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy[J]. Nano Letters, 2017, 17(9): 5595-5599. doi: 10.1021/acs.nanolett.7b02420
    [62]
    WANG H N, ZHANG CH J, RANA F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2[J]. Nano Letters, 2015, 15(1): 339-345. doi: 10.1021/nl503636c
    [63]
    LI L Q, LIN M F, ZHANG X, et al. Phonon-suppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides[J]. Nano Letters, 2019, 19(9): 6078-6086. doi: 10.1021/acs.nanolett.9b02005
    [64]
    LI Y L, LIU W, WANG Y K, et al. Ultrafast electron cooling and decay in monolayer WS2 revealed by time- and energy-resolved photoemission electron microscopy[J]. Nano Letters, 2020, 20(5): 3747-3753. doi: 10.1021/acs.nanolett.0c00742
    [65]
    LIU H, WANG CH, ZUO ZH G, et al. Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy[J]. Advanced Materials, 2020, 32(2): 1906540. doi: 10.1002/adma.201906540
    [66]
    LI L SH, CARTER E A. Defect-mediated charge-carrier trapping and nonradiative recombination in WSe2 monolayers[J]. Journal of the American Chemical Society, 2019, 141(26): 10451-10461. doi: 10.1021/jacs.9b04663
    [67]
    AMANI M, LIEN D H, KIRIYA D, et al. Near-unity photoluminescence quantum yield in MoS2[J]. Science, 2015, 350(6264): 1065-1068. doi: 10.1126/science.aad2114
    [68]
    WU ZH T, LUO ZH ZH, SHEN Y T, et al. Defects as a factor limiting carrier mobility in WSe2: a spectroscopic investigation[J]. Nano Research, 2016, 9(12): 3622-3631. doi: 10.1007/s12274-016-1232-5
    [69]
    TOSUN M, CHAN L, AMANI M, et al. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment[J]. ACS Nano, 2016, 10(7): 6853-6860. doi: 10.1021/acsnano.6b02521
    [70]
    CHEE S S, LEE W J, JO Y R, et al. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays[J]. Advanced Functional Materials, 2020, 30(11): 1908147. doi: 10.1002/adfm.201908147
    [71]
    YANG J, KAWAI H, WONG C P Y, et al. Electrical doping effect of vacancies on monolayer MoS2[J]. The Journal of Physical Chemistry C, 2019, 123(5): 2933-2939. doi: 10.1021/acs.jpcc.8b10496
    [72]
    CHEE S S, LEE J H, LEE K, et al. Defect-assisted contact property enhancement in a molybdenum disulfide monolayer[J]. ACS Applied Materials &Interfaces, 2020, 12(3): 4129-4134.
    [73]
    XIE Y, WU E X, HU R X, et al. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment[J]. Nanoscale, 2018, 10(26): 12436-12444. doi: 10.1039/C8NR02668H
    [74]
    YIN L, HE P, CHENG R, et al. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices[J]. Nature Communications, 2019, 10(1): 4133. doi: 10.1038/s41467-019-12200-x
    [75]
    KOPERSKI M, NOGAJEWSKI K, ARORA A, et al. Single photon emitters in exfoliated WSe2 structures[J]. Nature Nanotechnology, 2015, 10(6): 503-506. doi: 10.1038/nnano.2015.67
    [76]
    HE Y M, CLARK G, SCHAIBLEY J R, et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 2015, 10(6): 497-502. doi: 10.1038/nnano.2015.75
    [77]
    SRIVASTAVA A, SIDLER M, ALLAIN A V, et al. Optically active quantum dots in monolayer WSe2[J]. Nature Nanotechnology, 2015, 10(6): 491-496. doi: 10.1038/nnano.2015.60
    [78]
    MOODY G, TRAN K, LU X B, et al. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2[J]. Physical Review Letters, 2018, 121(5): 057403. doi: 10.1103/PhysRevLett.121.057403
    [79]
    REFAELY-ABRAMSON S, QIU D Y, LOUIE S G, et al. Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides[J]. Physical Review Letters, 2018, 121(16): 167402. doi: 10.1103/PhysRevLett.121.167402
    [80]
    WANG Q SH, GE SH F, LI X, et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy[J]. ACS Nano, 2013, 7(12): 11087-11093. doi: 10.1021/nn405419h
    [81]
    WANG SH SH, ROBERTSON A, WARNER J H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides[J]. Chemical Society Reviews, 2018, 47(17): 6764-6794. doi: 10.1039/C8CS00236C
    [82]
    WU ZH T, NI ZH H. Spectroscopic investigation of defects in two-dimensional materials[J]. Nanophotonics, 2017, 6(6): 1219-1237. doi: 10.1515/nanoph-2016-0151
    [83]
    JIANG J, XU T, LU J P, et al. Defect engineering in 2D materials: precise manipulation and improved functionalities[J]. Research, 2019, 2019: 4641739.
    [84]
    LIN ZH, CARVALHO B R, KAHN E, et al. Defect engineering of two-dimensional transition metal dichalcogenides[J]. 2D Materials, 2016, 3(2): 022002. doi: 10.1088/2053-1583/3/2/022002
    [85]
    ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622. doi: 10.1021/nl4007479
    [86]
    AMANI M, TAHERI P, ADDOU R, et al. Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides[J]. Nano Letters, 2016, 16(4): 2786-2791. doi: 10.1021/acs.nanolett.6b00536
    [87]
    HONG J H, HU ZH X, PROBERT M, et al. Exploring atomic defects in molybdenum disulphide monolayers[J]. Nature Communications, 2015, 6(1): 6293. doi: 10.1038/ncomms7293
    [88]
    SCHULER B, QIU D Y, REFAELY-ABRAMSON S, et al. Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2[J]. Physical Review Letters, 2019, 123(7): 076801. doi: 10.1103/PhysRevLett.123.076801
    [89]
    CHEN P, SHANG J M, YANG Y, et al. Annealing tunes interlayer coupling and optoelectronic property of bilayer SnSe2/MoSe2 heterostructures[J]. Applied Surface Science, 2017, 419: 460-464. doi: 10.1016/j.apsusc.2017.04.244
    [90]
    HE ZH Y, WANG X CH, XU W SH, et al. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing[J]. ACS Nano, 2016, 10(6): 5847-5855. doi: 10.1021/acsnano.6b00714
    [91]
    PETŐ J, OLLÁR T, VANCSÓ P, et al. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nature Chemistry, 2018, 10(12): 1246-1251. doi: 10.1038/s41557-018-0136-2
    [92]
    BARJA S, REFAELY-ABRAMSON S, SCHULER B, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides[J]. Nature Communications, 2019, 10(1): 3382. doi: 10.1038/s41467-019-11342-2
    [93]
    SCHULER B, LEE J H, KASTL C, et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain[J]. ACS Nano, 2019, 13(9): 10520-10534. doi: 10.1021/acsnano.9b04611
    [94]
    AGHAJANIAN M, SCHULER B, COCHRANE K A, et al. Resonant and bound states of charged defects in two-dimensional semiconductors[J]. Physical Review B, 2020, 101(8): 081201. doi: 10.1103/PhysRevB.101.081201
    [95]
    CHEN M, HAM H, WI S, et al. Multibit data storage states formed in plasma-treated MoS2 transistors[J]. Acs Nano, 2014, 8(4): 4023-4032.
    [96]
    HU Z H, WU ZH T, HAN CH, et al. Two-dimensional transition metal dichalcogenides: Interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9): 3100-3128. doi: 10.1039/C8CS00024G
    [97]
    ZAN R, RAMASSE Q M, JALIL R, et al. Control of radiation damage in MoS2 by graphene encapsulation[J]. ACS Nano, 2013, 7(11): 10167-10174. doi: 10.1021/nn4044035
    [98]
    KOMSA H P, KOTAKOSKI J, KURASCH S, et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping[J]. Physical Review Letters, 2012, 109(3): 035503. doi: 10.1103/PhysRevLett.109.035503
    [99]
    WALKER II R C, SHI T, SILVA E C, et al. Radiation effects on two-dimensional materials[J]. Physica Status Solidi (A), 2016, 213(12): 3065-3077. doi: 10.1002/pssa.201600395
    [100]
    ZHAO G Y, DENG H, TYREE N, et al. Recent progress on irradiation-induced defect engineering of two-dimensional 2H-MoS2 few layers[J]. Applied Sciences, 2019, 9(4): 678. doi: 10.3390/app9040678
    [101]
    CHOW P K, JACOBS-GEDRIM R B, GAO J, et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J]. ACS Nano, 2015, 9(2): 1520-1527. doi: 10.1021/nn5073495
    [102]
    TONGAY S, SUH J, ATACA C, et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons[J]. Scientific Reports, 2013, 3: 2657. doi: 10.1038/srep02657
    [103]
    WU ZH T, ZHAO W W, JIANG J, et al. Defect activated photoluminescence in WSe2 monolayer[J]. The Journal of Physical Chemistry C, 2017, 121(22): 12294-12299. doi: 10.1021/acs.jpcc.7b03585
    [104]
    MITTERREITER E, SCHULER B, COCHRANE K A, et al. Atomistic positioning of defects in helium ion treated single layer MoS2[J]. Nano Letters, 2020, 20(6): 4437-4444.
    [105]
    MENG J L, WEI ZH, TANG J, et al. Employing defected monolayer MoS2 as charge storage materials[J]. Nanotechnology, 2020, 31(23): 235710. doi: 10.1088/1361-6528/ab7c47
    [106]
    ZHANG SH, WANG CH G, LI M Y, et al. Defect structure of localized excitons in a WSe2 monolayer[J]. Physical Review Letters, 2017, 119(4): 046101. doi: 10.1103/PhysRevLett.119.046101
    [107]
    ZHENG Y J, CHEN Y F, HUANG Y L, et al. Point defects and localized excitons in 2D WSe2[J]. ACS Nano, 2019, 13(5): 6050-6059. doi: 10.1021/acsnano.9b02316
    [108]
    LEE Y, YUN S J, KIM Y, et al. Near-field spectral mapping of individual exciton complexes of monolayer WS2 correlated with local defects and charge population[J]. Nanoscale, 2017, 9(6): 2272-2278. doi: 10.1039/C6NR08813A
    [109]
    KUMAR R, VERZHBITSKIY I, EDA G. Strong optical absorption and photocarrier relaxation in 2-D semiconductors[J]. IEEE Journal of Quantum Electronics, 2015, 51(10): 0600206.
    [110]
    GREBEN K, ARORA S, HARATS M G, et al. Intrinsic and extrinsic defect-related excitons in TMDCs[J]. Nano Letters, 2020, 20(4): 2544-2550. doi: 10.1021/acs.nanolett.9b05323
    [111]
    JADCZAK J, KUTROWSKA-GIRZYCKA J, KAPUŚCIŃSKI P, et al. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments[J]. Nanotechnology, 2017, 28(39): 395702. doi: 10.1088/1361-6528/aa87d0
    [112]
    SHANG J ZH, CONG CH X, SHEN X N, et al. Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS2 and MoS2[J]. Physical Review Materials, 2017, 1(7): 074001. doi: 10.1103/PhysRevMaterials.1.074001
    [113]
    WIERZBOWSKI J, KLEIN J, SIGGER F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit[J]. Scientific Reports, 2017, 7(1): 12383. doi: 10.1038/s41598-017-09739-4
    [114]
    YU Y, DANG J CH, QIAN CH J, et al. Many-body effect of mesoscopic localized states in MoS2 monolayer[J]. Physical Review Materials, 2019, 3(5): 051001. doi: 10.1103/PhysRevMaterials.3.051001
    [115]
    CAROZO V, WANG Y X, FUJISAWA K, et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide[J]. Science Advances, 2017, 3(4): e1602813. doi: 10.1126/sciadv.1602813
    [116]
    KATO T, KANEKO T. Optical detection of a highly localized impurity state in monolayer tungsten disulfide[J]. ACS Nano, 2014, 8(12): 12777-12785. doi: 10.1021/nn5059858
    [117]
    MOLAS M R, NOGAJEWSKI K, SLOBODENIUK A O, et al. The optical response of monolayer, few-layer and bulk tungsten disulfide[J]. Nanoscale, 2017, 9(35): 13128-13141. doi: 10.1039/C7NR04672C
    [118]
    GORDO V O, BALANTA M A G, GOBATO Y G, et al. Revealing the nature of low-temperature photoluminescence peaks by laser treatment in van der Waals epitaxially grown WS2 monolayers[J]. Nanoscale, 2018, 10(10): 4807-4815. doi: 10.1039/C8NR00719E
    [119]
    VENANZI T, ARORA H, ERBE A, et al. Exciton localization in MoSe2 monolayers induced by adsorbed gas molecules[J]. Applied Physics Letters, 2019, 114(17): 172106. doi: 10.1063/1.5094118
    [120]
    HE Z Y, ZHAO R, CHEN X F, et al. Defect engineering in single-layer MoS2 using heavy ion irradiation[J]. ACS Applied Materials &Interfaces, 2018, 10(49): 42524-42533.
    [121]
    LEE C, JEONG B G, YUN S J, et al. Unveiling defect-related raman mode of monolayer WS2 via tip-enhanced resonance raman scattering[J]. ACS Nano, 2018, 12(10): 9982-9990. doi: 10.1021/acsnano.8b04265
    [122]
    MIGNUZZI S, POLLARD A J, BONINI N, et al. Effect of disorder on raman scattering of single-layer MoS2[J]. Physical Review B, 2015, 91(19): 195411. doi: 10.1103/PhysRevB.91.195411
    [123]
    SHI W, LIN M L, TAN Q H, et al. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2[J]. 2D Materials, 2016, 3(2): 025016. doi: 10.1088/2053-1583/3/2/025016
    [124]
    SHI W, ZHANG X, LI X L, et al. Phonon confinement effect in two-dimensional nanocrystallites of monolayer MoS2 to probe phonon dispersion trends away from brillouin-zone center[J]. Chinese Physics Letters, 2016, 33(5): 057801. doi: 10.1088/0256-307X/33/5/057801
    [125]
    ZHANG X, QIAO X F, SHI W, et al. Phonon and raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material[J]. Chemical Society Reviews, 2015, 44(9): 2757-2785. doi: 10.1039/C4CS00282B
    [126]
    WANG J Y, VERZHBITSKIY I, EDA G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides[J]. Advanced Materials, 2018, 30(47): e1802687. doi: 10.1002/adma.201802687
    [127]
    PAUR M, MOLINA-MENDOZA A J, BRATSCHITSCH R, et al. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors[J]. Nature Communications, 2019, 10(1): 1709. doi: 10.1038/s41467-019-09781-y
    [128]
    POSPISCHIL A, FURCHI M M, MUELLER T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nature Nanotechnology, 2014, 9(4): 257-261. doi: 10.1038/nnano.2014.14
    [129]
    ROSS J S, RIVERA P, SCHAIBLEY J, et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction[J]. Nano Letters, 2017, 17(2): 638-643. doi: 10.1021/acs.nanolett.6b03398
    [130]
    CLARK G, SCHAIBLEY J R, ROSS J, et al. Single defect light-emitting diode in a van der Waals heterostructure[J]. Nano Letters, 2016, 16(6): 3944-3948. doi: 10.1021/acs.nanolett.6b01580
    [131]
    SCHWARZ S, KOZIKOV A, WITHERS F, et al. Electrically pumped single-defect light emitters in WSe2[J]. 2D Materials, 2016, 3(2): 025038. doi: 10.1088/2053-1583/3/2/025038
    [132]
    PALACIOS-BERRAQUERO C, BARBONE M, KARA D M, et al. Atomically thin quantum light-emitting diodes[J]. Nature Communications, 2016, 7: 12978. doi: 10.1038/ncomms12978
    [133]
    SCHULER B, COCHRANE K A, KASTL C, et al. Electrically driven photon emission from individual atomic defects in monolayer WS2[J]. Science advances, 2020, 6(38): eabb5988. doi: 10.1126/sciadv.abb5988
    [134]
    KIM H, LIEN D H, AMANI M, et al. Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment[J]. ACS Nano, 2017, 11(5): 5179-5185. doi: 10.1021/acsnano.7b02521
    [135]
    GOODMAN A J, WILLARD A P, TISDALE W A. Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2[J]. Physical Review B, 2017, 96(12): 121404. doi: 10.1103/PhysRevB.96.121404
    [136]
    BRETSCHER H M, LI Z J, XIAO J, et al.. The bright side of defects in MoS2 and WS2 and a generalizable chemical treatment protocol for defect passivation[J]. arXiv preprint arXiv, 2020, 2002.03956.
    [137]
    TANOH A O A, ALEXANDER-WEBBER J, XIAO J, et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands[J]. Nano Letters, 2019, 19(9): 6299-6307. doi: 10.1021/acs.nanolett.9b02431
    [138]
    HAN H V, LU A Y, LU L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. ACS Nano, 2016, 10(1): 1454-1461. doi: 10.1021/acsnano.5b06960
    [139]
    TANOH A O A, XIAO J, ALEXANDER-WEBBER J, et al.. Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands[J]. arXiv preprint arXiv, 2006.04505, 2020.
    [140]
    KIM H, AHN G H, CHO J, et al. Synthetic WSe2 monolayers with high photoluminescence quantum yield[J]. Science Advances, 2019, 5(1): eaau4728. doi: 10.1126/sciadv.aau4728
    [141]
    LIEN D H, UDDIN S Z, YEH M, et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors[J]. Science, 2019, 364(6439): 468-471. doi: 10.1126/science.aaw8053
    [142]
    STRIKHA M V, KURCHAK A I, MOROZOVSKA A N. Gate-voltage control of quantum yield in monolayer transition-metal dichalcogenide[J]. Physical Review Applied, 2020, 13(1): 014040. doi: 10.1103/PhysRevApplied.13.014040
    [143]
    ATALLAH T L, WANG J, BOSCH M, et al. Electrostatic screening of charged defects in monolayer MoS2[J]. Journal of Physical Chemistry Letters, 2017, 8(10): 2148-2152. doi: 10.1021/acs.jpclett.7b00710
    [144]
    NAN H Y, WANG Z L, WANG W H, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding[J]. ACS Nano, 2014, 8(6): 5738-5745. doi: 10.1021/nn500532f
    [145]
    LU J P, CARVALHO A, CHAN X K, et al. Atomic healing of defects in transition metal dichalcogenides[J]. Nano Letters, 2015, 15(5): 3524-3532. doi: 10.1021/acs.nanolett.5b00952
    [146]
    OH H M, HAN G H, KIM H, et al. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, raman spectroscopy, and atomic force microscopy[J]. ACS Nano, 2016, 10(5): 5230-5236. doi: 10.1021/acsnano.6b00895
    [147]
    ARDEKANI H, YOUNTS R, YU Y L, et al. Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2[J]. ACS Applied Materials &Interfaces, 2019, 11(41): 38240-38246.
    [148]
    LEE Y, GHIMIRE G, ROY S, et al. Impeding exciton–exciton annihilation in monolayer WS2 by laser irradiation[J]. ACS Photonics, 2018, 5(7): 2904-2911. doi: 10.1021/acsphotonics.8b00249
    [149]
    VENKATAKRISHNAN A, CHUA H, TAN P, et al. Microsteganography on WS2 monolayers tailored by direct laser painting[J]. ACS Nano, 2017, 11(1): 713-720. doi: 10.1021/acsnano.6b07118
    [150]
    SIVARAM S V, HANBICKI A T, ROSENBERGER M R, et al. Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation[J]. ACS Applied Materials &Interfaces, 2019, 11(17): 16147-16155.
    [151]
    WANG W F, SHU H B, WANG J, et al. Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth[J]. ACS Applied Materials &Interfaces, 2020, 12(8): 9563-9571.
    [152]
    ZHU Y, YI H, HAO Q Y, et al. Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence[J]. Applied Surface Science, 2019, 485: 101-107. doi: 10.1016/j.apsusc.2019.04.168
    [153]
    NIE ZH G, LONG R, SUN L F, et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2[J]. ACS Nano, 2014, 8(10): 10931-10940. doi: 10.1021/nn504760x
    [154]
    CEBALLOS F, CUI Q N, BELLUS M Z, et al. Exciton formation in monolayer transition metal dichalcogenides[J]. Nanoscale, 2016, 8(22): 11681-11688. doi: 10.1039/C6NR02516A
    [155]
    SHI H Y, YAN R S, BERTOLAZZI S, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals[J]. ACS Nano, 2013, 7(2): 1072-1080. doi: 10.1021/nn303973r
    [156]
    ZIPFEL J, KULIG M, PEREA-CAUSÍN R, et al. Exciton diffusion in monolayer semiconductors with suppressed disorder[J]. Physical Review B, 2020, 101(11): 115430. doi: 10.1103/PhysRevB.101.115430
    [157]
    LIU H, WANG CH, LIU D M, et al. Neutral and defect-induced exciton annihilation in defective monolayer WS2[J]. Nanoscale, 2019, 11(16): 7913-7920. doi: 10.1039/C9NR00967A
    [158]
    KAR S, SU Y, NAIR R R, et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy[J]. ACS Nano, 2015, 9(12): 12004-12010. doi: 10.1021/acsnano.5b04804
    [159]
    CHEN K, GHOSH R, MENG X H, et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2[J]. npj 2D Materials and Applications, 2017, 1(1): 15. doi: 10.1038/s41699-017-0019-1
    [160]
    CHU ZH D, WANG CH Y, QUAN J M, et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 13908-13913. doi: 10.1073/pnas.2004106117
    [161]
    HEIN P, STANGE A, HANFF K, et al. Momentum-resolved hot electron dynamics at the 2H-MoS2 surface[J]. Physical Review B, 2016, 94(20): 205406. doi: 10.1103/PhysRevB.94.205406
    [162]
    KASTL C, KOCH R J, CHEN C T, et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy[J]. ACS Nano, 2019, 13(2): 1284-1291.
    [163]
    SUN Q, YU H, UENO K, et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 2016, 10(3): 3835-3842. doi: 10.1021/acsnano.6b00715
    [164]
    YU H, SUN Q, UENO K, et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J]. ACS Nano, 2016, 10(11): 10373-10381. doi: 10.1021/acsnano.6b06206
    [165]
    ULSTRUP S, ČABO A G, MIWA J A, et al. Ultrafast band structure control of a two-dimensional heterostructure[J]. ACS Nano, 2016, 10(6): 6315-6322. doi: 10.1021/acsnano.6b02622
    [166]
    ČABO A G, MIWA J A, GRONBORG S S, et al. Observation of ultrafast free carrier dynamics in single layer MoS2[J]. Nano Letters, 2015, 15(9): 5883-5887. doi: 10.1021/acs.nanolett.5b01967
    [167]
    JULIEN M, MICHAEL K. L. M, CHAKRADHAR S, et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors[J]. Science, 2020, 370(6521): 1199-1204. doi: 10.1126/science.aba1029
    [168]
    JOHANNSEN J C, ULSTRUP S, CILENTO F, et al. Direct view of hot carrier dynamics in graphene[J]. Physical Review Letters, 2013, 111(2): 027403. doi: 10.1103/PhysRevLett.111.027403
    [169]
    BERTONI R, NICHOLSON C W, WALDECKER L, et al. Generation and evolution of spin-, valley-, and layer-polarized excited carriers in inversion-symmetric WSe2[J]. Physical Review Letters, 2016, 117(27): 277201. doi: 10.1103/PhysRevLett.117.277201
    [170]
    BEYER H, ROHDE G, ČABO A G, et al. 80% valley polarization of free carriers in singly oriented single-layer WS2 on Au (111)[J]. Physical Review Letters, 2019, 123(23): 236802. doi: 10.1103/PhysRevLett.123.236802
    [171]
    MAN M K L, MARGIOLAKIS A, DECKOFF-JONES S, et al. Imaging the motion of electrons across semiconductor heterojunctions[J]. Nature Nanotechnology, 2017, 12(1): 36-40. doi: 10.1038/nnano.2016.183
    [172]
    LI Y L, SUN Q, ZU SH, et al. Correlation between near-field enhancement and dephasing time in plasmonic dimers[J]. Physical Review Letters, 2020, 124(16): 163901. doi: 10.1103/PhysRevLett.124.163901
    [173]
    WANG L, XU C, LI M Y, et al. Unraveling spatially heterogeneous ultrafast carrier dynamics of single-layer WSe2 by femtosecond time-resolved photoemission electron microscopy[J]. Nano Letters, 2018, 18(8): 5172-5178. doi: 10.1021/acs.nanolett.8b02103
    [174]
    DOHERTY T A S, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites[J]. Nature, 2020, 580(7803): 360-366. doi: 10.1038/s41586-020-2184-1
    [175]
    SOBOTA J A, YANG S, ANALYTIS J G, et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3[J]. Physical Review Letters, 2012, 108(11): 117403. doi: 10.1103/PhysRevLett.108.117403
    [176]
    GOODMAN A J, LIEN D H, AHN G H, et al. Substrate-dependent exciton diffusion and annihilation in chemically treated MoS2 and WS2[J]. The Journal of Physical Chemistry C, 2020, 124(22): 12175-12184. doi: 10.1021/acs.jpcc.0c04000
    [177]
    KAASBJERG K, MARTINY J H J, LOW T, et al. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides[J]. Physical Review B, 2017, 96(24): 241411. doi: 10.1103/PhysRevB.96.241411
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(3783) PDF downloads(463) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return