Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J]. Chinese Optics, 2021, 14(1): 43-65. doi: 10.37188/CO.2020-0096
Citation: ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J]. Chinese Optics, 2021, 14(1): 43-65. doi: 10.37188/CO.2020-0096

Recent progress and prospects of topological quantum material-based photodetectors

doi: 10.37188/CO.2020-0096
Funds:  Supported by Outstanding Youth Foundation of National Natural Science Foundation of China (No. 61922022); Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.61421002); National Natural Science Foundation of China (No. 61875031)
More Information
  • The discovery of the topological quantum states of matter is a major milestone in condensed matter physics and material science. Due to the existence of special surface states (e.g. Dirac fermions, Weyl fermions, Majorana fermions), topological quantum materials can usually exhibit some novel physical properties (such as the quantum anomalous Hall effect, 3D quantum Hall effect, Zero-band gap caused by topological states, ultra-high carrier mobility, etc.), which are different from conventional semiconductors. Because of this, there is an abundance of prospects for applications in low-power electronic and optoelectronic devices, especially in broad-spectrum detection. However, the application of topological quantum materials in the field of photoelectric detection is still in the exploratory stage at present. This article reviews the characteristics and preparation methods of topological quantum materials and the development status with respect to optical-sensing materials in photodetectors. The structure and performance of the devices based on topological quantum materials are also mentioned as the development prospects in the field of broad-spectrum detection.
  • loading
  • [1]
    ATABAKI A H, MOAZENI S, PAVANELLO F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349-354. doi: 10.1038/s41586-018-0028-z
    王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程,2019,48(1):0102001. doi: 10.3788/IRLA201948.0102001

    WANG J, JIANG Y D. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0102001. (in Chinese) doi: 10.3788/IRLA201948.0102001
    张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37. doi: 10.3788/co.20191201.0019

    ZHANG M J, CAI Y, JIANG F, et al. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. (in Chinese) doi: 10.3788/co.20191201.0019
    XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843. doi: 10.1038/nnano.2009.292
    罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版),2019,18(3):1-10.

    LUO M, WU F, ZHANG L L, et al. Detection of polarized light using two-dimensional atomic materials[J]. Journal of Nantong University (Natural Science Edition), 2019, 18(3): 1-10. (in Chinese)
    公爽, 田金荣, 李克轩, 等. 新型二维材料在固体激光器中的应用研究进展[J]. 中国光学,2018,11(1):18-30. doi: 10.3788/co.20181101.0018

    GONG SH, TIAN J R, LI K X, et al. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. (in Chinese) doi: 10.3788/co.20181101.0018
    WANG F K, ZHANG Y, GAO Y, et al. 2D metal chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi: 10.1002/smll.201901347
    BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8
    LI Y F, ZHANG Y T, YU Y, et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 368-374. doi: 10.1364/PRJ.380249
    何珂, 薛其坤. 拓扑量子材料与量子反常霍尔效应[J]. 材料研究学报,2019,29(3):161-177.

    HE K, XUE Q K. Topological quantum materials and quantum anomalous hall effect[J]. Chinese Journal of Materials Research, 2019, 29(3): 161-177. (in Chinese)
    崔亚宁, 任伟. 拓扑量子材料的研究进展[J]. 自然杂志,2019,41(5):348-357.

    CUI Y N, REN W. Research advances of topological quantum materials[J]. Chinese Journal of Nature, 2019, 41(5): 348-357. (in Chinese)
    GUI X, PLETIKOSIC I, CAO H B, et al. A new magnetic topological quantum material candidate by design[J]. ACS Central Science, 2019, 5: 900-910.
    ZHANG T T, JIANG Y, SONG ZH D, et al. Catalogue of topological electronic materials[J]. Nature, 2019, 566(7745): 475-479. doi: 10.1038/s41586-019-0944-6
    WANG A Q, YE X G, YU D P, et al. Topological semimetal nanostructures from properties to topotronics[J]. ACS nano, 2020, 14(4): 3755-3778.
    GAO H, VENDERBOS J W F, KIN Y, et al. Topological semimetals from first principles[J]. Annual Review of Materials Research, 2019, 49: 153-83. doi: 10.1146/annurev-matsci-070218-010049
    WANG SH, LIN B C, Wang A Q, et al. Quantum transport in Dirac and Weyl semimetals: a review[J]. Advances in Physics:X, 2017, 2(3): 518-544. doi: 10.1080/23746149.2017.1327329
    DAS P K, DI SANTE D, CILENTO F, et al. Electronic properties of candidate type-Ⅱ Weyl semimetal WTe2. a review perspective[J]. Electronic Structure, 2019, 1(1): 014003. doi: 10.1088/2516-1075/ab0835
    SCHÜFFELGEN P, SCHMITT T, SCHLEENVOIGT M, et al. Exploiting topological matter for Majorana physics and devices[J]. Solid-State Electronics, 2019, 155: 99-104. doi: 10.1016/j.sse.2019.03.005
    YUE Z J, WANG X L, GU M. Topological Insulator Materials for Advanced Optoelectronic Devices[M]. LUO H X. Advanced Topological Insulators. Beverly, MA, USA: Scrivener Publishing LLC, 2019: 45-70.
    WANG H CH, WANG J. Electron transport in Dirac and Weyl semimetals[J]. Chinese Physics B, 2018, 27(10): 107402. doi: 10.1088/1674-1056/27/10/107402
    张玉平, 唐利斌. 拓扑绝缘体光电探测器研究进展[J]. 红外技术,2020,42(1):1-9.

    ZHANG Y P, TANG L B. Research progress in photodetectors based on topological insulators[J]. Infrared Technology, 2020, 42(1): 1-9. (in Chinese)
    CHAN C K, LINDNER N H, REFAEL G, et al. Photocurrents in Weyl semimetals[J]. Physical Review B, 2017, 95(4): 041104. doi: 10.1103/PhysRevB.95.041104
    MA J CH, DENG K, ZHENG L, et al. Experimental progress on layered topological semimetals[J]. 2D Materials, 2019, 6(3): 032001. doi: 10.1088/2053-1583/ab0902
    ZHE SH, RUI C, KARIM K, et al. Two-dimensional tellurium: progress, challenges, and prospects[J]. Nano-Micro Letters, 2020, 12: 1-34.
    HAN J Y, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics B, 2019, 28(1): 017103. doi: 10.1088/1674-1056/28/1/017103
    LI Y, SHI ZH F, LI X J, et al. Photodetectors based on inorganic halide perovskites: materials and devices[J]. Chinese Physics B, 2019, 28(1): 017803. doi: 10.1088/1674-1056/28/1/017803
    WANG J, HAN J Y, CHEN X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance[J]. InfoMat, 2019, 1(1): 33-53. doi: 10.1002/inf2.12004
    胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报,2019,68(12):120701.

    HU W D, LI Q, CHEN X SH, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)
    FANG Y R, GE Y Q, WANG C, et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser &Photonics Reviews, 2020, 14(1): 1900098.
    CHEN X Q, SHEHZAD K, GAO L, et al. Graphene hybrid structures for integrated and flexible optoelectronics[J]. Advanced Materials, 2020, 32(27): 1902039.
    ZHANG CH, ZHANG Y, YUAN X, et al. Quantum hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019, 565(7739): 331-336. doi: 10.1038/s41586-018-0798-3
    TANG F D, REN Y F, WANG P P, et al. Three-dimensional quantum hall effect and metal-insulator transition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541. doi: 10.1038/s41586-019-1180-9
    VERGNIORY M G, ELCORO L, FELSER C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485. doi: 10.1038/s41586-019-0954-4
    TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489. doi: 10.1038/s41586-019-0937-5
    ZHANG Y, ZHANG F, XU Y G, et al. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors[J]. Small Methods, 2019, 3(2): 1900349.
    BHATTACHARYYA B, GUPTA A, SENGUTTUVAN T D, et al. Topological insulator based dual state photo-switch originating through bulk and surface conduction channels[J]. Physica Status Solidi (B), 2018, 255(9): 800340. doi: 10.1002/pssb.201800340
    CULCER D, KESER A C, LI Y Q, et al. Transport in two-dimensional topological materials: recent developments in experiment and theory[J]. 2D Materials, 2020, 7(2): 022007. doi: 10.1088/2053-1583/ab6ff7
    BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761. doi: 10.1126/science.1133734
    KÖNIG M, BUHMANN H, MOLENKAMP L W, et al. The quantum spin hall effect: theory and experiment[J]. Journal of the Physical Society of Japan, 2008, 77(3): 031007. doi: 10.1143/JPSJ.77.031007
    LIU CH X, HUGHES T L, QI X L, et al. Quantum spin hall effect in inverted type-Ⅱ semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601. doi: 10.1103/PhysRevLett.100.236601
    LIU C W, WANG ZH H, QIU R L J, et al. Development of topological insulator and topological crystalline insulator nanostructures[J]. Nanotechnology, 2020, 31(19): 192001. doi: 10.1088/1361-6528/ab6dfc
    SWATEK P, WU Y, WANG L L, et al.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. arXiv: 1907.09596, 2019.
    LI ZH, LI J H, HE K, et al.. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials[J]. arXiv: 2003.13485, 2020.
    FU L. Topological crystalline insulators[J]. Physical Review Letters, 2011, 106(10): 106802. doi: 10.1103/PhysRevLett.106.106802
    LI Z, SHAO S, LI N, et al. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies[J]. Nano Letters, 2013, 13(11): 5443-5448. doi: 10.1021/nl4030193
    HSIEH T H, LIN H, LIU J W, et al. Topological crystalline insulators in the SnTe material class[J]. Nature Communications, 2012, 3(1): 982. doi: 10.1038/ncomms1969
    SCHOOP L M, DAI X, CAVA R J, et al. Special topic on topological semimetals-new directions[J]. APL Materials, 2020, 8(3): 030401. doi: 10.1063/5.0006015
    YAN M ZH, HUANG H Q, ZHANG K N, et al. Lorentz-violating type-Ⅱ Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1): 257. doi: 10.1038/s41467-017-00280-6
    KUSHWAHA S K, KRIZAN J W, FELDMAN B E, et al. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi[J]. APL Materials, 2015, 3(4): 041504. doi: 10.1063/1.4908158
    HUANG C, ZHOU B T, ZHANG H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1): 2217. doi: 10.1038/s41467-019-10233-w
    GUO J, HUANG Y, WU X SH, et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-Type ZrTe5 nanoribbons[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(3): 1800529. doi: 10.1002/pssr.201800529
    LV B Q, WENG H M, FU B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013. doi: 10.1103/PhysRevX.5.031013
    SUN Y, WU SH CH, YAN B H. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP[J]. Physical Review B, 2015, 92(11): 115428. doi: 10.1103/PhysRevB.92.115428
    ZHANG CH, NI ZH L, ZHANG J L, et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts[J]. Nature Materials, 2019, 18(5): 482-488. doi: 10.1038/s41563-019-0320-9
    SOLUYANOV A A, GRESCH D, WANG ZH J, et al. Type-Ⅱ Weyl semimetals[J]. Nature, 2015, 527(7579): 495-498. doi: 10.1038/nature15768
    DENG K, WAN G L, DENG P, et al. Experimental observation of topological Fermi arcs in type-Ⅱ Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110. doi: 10.1038/nphys3871
    MA J CH, GU Q Q, LIU Y N, et al. Nonlinear photoresponse of type-Ⅱ Weyl semimetals[J]. Nature Materials, 2019, 18(5): 476-481. doi: 10.1038/s41563-019-0296-5
    ZHANG X, WANG J, ZHANG SH CH. Topological insulators for high-performance terahertz to infrared applications[J]. Physical Review B, 2010, 82(24): 245107. doi: 10.1103/PhysRevB.82.245107
    YAN Y, LIAO ZH M, KE X X, et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons[J]. Nano Letters, 2014, 14(8): 4389-4394. doi: 10.1021/nl501276e
    SHARMA A, BHATTACHARYYA B, SRIVASTAVA A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Scientific Reports, 2016, 6(1): 19138. doi: 10.1038/srep19138
    LIU CH, ZHANG H B, SUN ZH, et al. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response[J]. Journal of Materials Chemistry C, 2016, 4(24): 5648-5655. doi: 10.1039/C6TC01083K
    DAS B, DAS N S, SARKAR S, et al. Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector[J]. ACS Applied Materials &Interfaces, 2017, 9(27): 22788-22798.
    ZHENG W SH, XIE T, ZHOU Y, et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors[J]. Nature Communications, 2015, 6(1): 6972. doi: 10.1038/ncomms7972
    TANG W W, POLITANO A, GUO CH, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth Selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi: 10.1002/adfm.201801786
    KIM J, PARK S, JANG H, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488. doi: 10.1021/acsphotonics.6b00972
    YANG M, HAN Q, LIU X CH, et al. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film Heterojunction infrared Photodetector at optical communication waveband[J]. Advanced Functional Materials, 2020, 30(12): 1909659. doi: 10.1002/adfm.201909659
    TANG Y X, JIANG T, ZHOU T, et al. Ultrafast exciton transfer in perovskite CsPbBr3 quantum dots/topological insulator Bi2Se3 film heterostructure[J]. Nanotechnology, 2019, 30(32): 325702. doi: 10.1088/1361-6528/ab166f
    LIANG F X, LAING L, ZHAO X Y, et al. A sensitive broadband (UV-vis-NIR) perovskite photodetector using topological insulator as electrodes[J]. Advanced Optical Materials, 2019, 7(4): 1801392.
    YAO J D, SHAO J M, LI S W, et al. Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection[J]. Scientific Reports, 2015, 5(1): 14184. doi: 10.1038/srep14184
    YAO J D, ZHENG ZH Q, YANG G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840. doi: 10.1039/C6TC01453D
    YAO J D, ZHENG ZH Q, YANG G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe Photodetector with Bi2Te3 topological insulator electrodes[J]. Advanced Functional Materials, 2017, 27(33): 1701823. doi: 10.1002/adfm.201701823
    YANG M, WANG J, ZHAO Y F, et al. Three-dimensional topological insulator Bi2Te3/Organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers[J]. ACS Nano, 2018, 13(1): 755-763.
    YANG M, WANG J, ZHAO Y F, et al. Polarimetric three-dimensional topological insulators/organics thin film heterojunction photodetectors[J]. ACS Nano, 2019, 13(9): 10810-10817. doi: 10.1021/acsnano.9b05775
    SHARMA A, SENGUTTUVAN T D, OJHA V N, et al. Novel synthesis of topological insulator based nanostructures (Bi2Te3) demonstrating high performance photodetection[J]. Scientific Reports, 2019, 9(1): 3804. doi: 10.1038/s41598-019-40394-z
    QIAO H, YUAN J, XU Z Q, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894. doi: 10.1021/nn506920z
    LIU H W, ZHU X L, SUN X X, et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions[J]. ACS Nano, 2019, 13(11): 13573-13580. doi: 10.1021/acsnano.9b07563
    ZHENG K, LUO L B, ZHANG T F, et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film[J]. Journal of Materials Chemistry C, 2015, 3(35): 9154-9160. doi: 10.1039/C5TC01772F
    SUN H H, JIANG T, ZANG Y Y, et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures[J]. Nanoscale, 2017, 9(27): 9325-9332. doi: 10.1039/C7NR01715D
    LIU H W, LI D, MA CH, et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics[J]. Nano Energy, 2019, 59: 66-74. doi: 10.1016/j.nanoen.2019.02.032
    HUANG S M, HUANG S J, YAN Y J, et al. Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake[J]. Scientific Reports, 2017, 7(1): 45413. doi: 10.1038/srep45413
    AHER R, BHORDE A, NAIR S, et al. Solvothermal growth of PbBi2Se4 nano-flowers: a material for humidity sensor and photodetector applications[J]. Physica Status Solidi (A), 2019, 216(11): 1900065. doi: 10.1002/pssa.201900065
    SAFDAR M, WANG Q SH, MIRZA M, et al. Topological surface transport properties of single-crystalline SnTe nanowire[J]. Nano Letters, 2013, 13(11): 5344-5349. doi: 10.1021/nl402841x
    JIANG T, ZANG Y Y, SUN H H. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy[J]. Advanced Optical Materials, 2017, 5(5): 1600727. doi: 10.1002/adom.201600727
    YANG J, YU W ZH, PAN ZH H, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity[J]. Small, 2018, 14(37): 1802598. doi: 10.1002/smll.201802598
    GU S H, DING K, PAN J, et al. Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures[J]. Journal of Materials Chemistry A, 2017, 5(22): 11171-11178. doi: 10.1039/C7TA02222K
    ZHANG H B, MAN B Y, ZHANG Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection[J]. ACS Applied Materials &Interfaces, 2017, 9(16): 14067-14077.
    ZHANG H B, SONG Z L, LI D, et al. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi2Se3[J]. Applied Surface Science, 2020, 509: 145290. doi: 10.1016/j.apsusc.2020.145290
    CONTE A M, PULCI O, BECHSTEDT F. Electronic and optical properties of topological semimetal Cd3As2[J]. Scientific Reports, 2017, 7(1): 45500. doi: 10.1038/srep45500
    WANG Q SH, LI C ZH, GE SH F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2[J]. Nano Letters, 2017, 17(2): 834-841. doi: 10.1021/acs.nanolett.6b04084
    YAVARISHAD N, HOSSEINI T, KHEIRANDISH E, et al. Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd3As2[J]. Applied Physics Express, 2017, 10(5): 052201. doi: 10.7567/APEX.10.052201
    HUANG Z H, JIANG Y D, HAN Q, et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd3As2/MoS2 heterojunction[J]. Nanotechnology, 2019, 31(6): 064001.
    WU Y F, ZHANG L, LI C ZH, et al. Dirac semimetal heterostructures: 3D Cd3As2 on 2D Graphene[J]. Advanced Materials, 2018, 30(34): 1707547. doi: 10.1002/adma.201707547
    YANG M, WANG J, HAN J Y, et al. Enhanced performance of wideband room temperature photodetector based on Cd3As2 thin film/Pentacene heterojunction[J]. ACS Photonics, 2018, 5(8): 3438-3445. doi: 10.1021/acsphotonics.8b00727
    YANG M, WANG J, YANG Y K, et al. Ultraviolet to long-wave infrared photodetectors based on a three- dimensional Dirac semimetal/organic thin film heterojunction[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3914-3921. doi: 10.1021/acs.jpclett.9b01619
    LÉONARD F, YU W L, COLLINS K C, et al. Strong photothermoelectric response and contact reactivity of the Dirac semimetal ZrTe5[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37041-37047.
    YU X CH, YU P, WU D, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor[J]. Nature Communications, 2018, 9(1): 1545. doi: 10.1038/s41467-018-03935-0
    XU H, GUO CH, ZHANG J ZH, et al. PtTe2-based type-Ⅱ dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection[J]. Small, 2019, 15(52): 1903362. doi: 10.1002/smll.201903362
    CHI SH M, LI ZH L, XIE Y, et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs[J]. Advanced Materials, 2018, 30(43): 1801372-1801379. doi: 10.1002/adma.201801372
    OSTERHOUDT G B, DIEBEL L K, GRAY M J, et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal[J]. Nature Materials, 2019, 18(5): 471-475. doi: 10.1038/s41563-019-0297-4
    LAI J W, LIU X, MA J CH, et al. Anisotropic broadband photoresponse of layered type-Ⅱ Weyl semimetal MoTe2[J]. Advanced Materials, 2018, 30(22): 1707152-1707159. doi: 10.1002/adma.201707152
    WANG Q SH, ZHENG J CH, HE Y, et al. Robust edge photocurrent response on layered type Ⅱ Weyl semimetal WTe2[J]. Nature Communications, 2019, 10(1): 5736. doi: 10.1038/s41467-019-13713-1
    ZHOU W, CHEN J ZH, GAO H, et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light[J]. Advanced Materials, 2019, 31(5): 1804629-1804636. doi: 10.1002/adma.201804629
    LAI J W, LIU Y N, MA J CH, et al. Broadband anisotropic photoresponse of the “hydrogen atom” version type-Ⅱ Weyl semimetal candidate TaIrTe[J]. ACS Nano, 2018, 12(4): 4055-4061. doi: 10.1021/acsnano.8b01897
    LU ZH J, XU Y, YU Y Q, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9): 1907951. doi: 10.1002/adfm.201907951
    CHEN W J, LIANG R R, ZHANG SH Q, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132. doi: 10.1007/s12274-019-2583-5
    YU W ZH, LI SH J, ZHANG Y P, et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility[J]. Small, 2017, 13(24): 1700268. doi: 10.1002/smll.201700268
    LIU Y J, LIU CH, WANG X M, et al. Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2[J]. Scientific Reports, 2018, 8(1): 12840. doi: 10.1038/s41598-018-29717-8
    LU M Y, CHANG Y T, CHEN H J. Efficient self-driven photodetectors featuring a mixed-dimensional van der waals heterojunction formed from a CdS nanowire and a MoTe2 flake[J]. Small, 2018, 14(40): 1802302. doi: 10.1002/smll.201802302
    MAKINO K, KUROMIYA S, TAKANO K, et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Applied Materials &Interfaces, 2016, 8(47): 32408-32413.
    WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi: 10.1002/adom.201801274
    ROGALSKI A, KOPYTKO M, MARTYNIUK P. Two-dimensional infrared and terahertz detectors: outlook and status[J]. Applied Physics Reviews, 2019, 6(2): 021316. doi: 10.1063/1.5088578
    杨旗, 申钧, 魏兴战, 等. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与激光工程,2020,49(1):0103003.

    YANG Q, SHEN J, WEI X ZH, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
    YE L, LI H, CHEN Z F, et al. Near-infrared photodetector based on MoS2/Black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699. doi: 10.1021/acsphotonics.6b00079
    HUANG ZH ZH, ZHANG T F, LIU J K, et al. Amorphous MoS2 photodetector with ultra-broadband response[J]. ACS Applied Electronic Materials, 2019, 1(7): 1314-1321. doi: 10.1021/acsaelm.9b00247
    ZHU W K, YAN F G, WEI X, et al. Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes[J]. Advanced Materials Letters, 2019, 10(5): 329-333. doi: 10.5185/amlett.2019.2281
    TSAI T H, LIANG ZH Y, LIN Y CH, et al. Photogating WS2 photodetectors using embedded WSe2 charge puddles[J]. ACS Nano, 2020, 14(4): 4559-4566. doi: 10.1021/acsnano.0c00098
    SUN J CH, WANG Y Y, GUO SH Q, et al. Lateral 2D WSe2 p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics[J]. Advanced Materials, 2020, 32(9): 1906499. doi: 10.1002/adma.201906499
    ZHENG ZH Q, ZHANG T M, YAO J D, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 2016, 27(22): 225501. doi: 10.1088/0957-4484/27/22/225501
    DU Y P, BO X Y, WANG D, et al. Emergence of topological nodal lines and type-Ⅱ Weyl nodes in the strong spin-orbit coupling system InNbX2(X=S, Se)[J]. Physical Review B, 2017, 96(23): 235152. doi: 10.1103/PhysRevB.96.235152
    YUAN Y F, WANG W K, ZHOU Y H, et al. Pressure-induced superconductivity in topological semimetal candidate TaTe4[J]. Advanced Electronic Materials, 2020, 6(3): 1901260. doi: 10.1002/aelm.201901260
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views (1791) PDF downloads(298) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint