Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LI Lin-wei, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming. Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances[J]. Chinese Optics, 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076
Citation: LI Lin-wei, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming. Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances[J]. Chinese Optics, 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076

Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances

doi: 10.37188/CO.2020-0076
Funds:  Supported by National Natural Science Foundation of China (No. 11674239, No. 61575139, No. 61575138); Program for the Top Young Talents of Shanxi Province; Program for the Sanjin Outstanding Talents of China
More Information
  • Corresponding author: huixu@126.com
  • Received Date: 26 Apr 2020
  • Rev Recd Date: 12 May 2020
  • Available Online: 25 Dec 2020
  • Publish Date: 25 Jan 2021
  • In order to measure the micro-displacement of a fluorescent substance, we propose a nanofluidic channel-resonant cavity structure. Firstly, by using the Finite-Difference Time-Domain (FDTD) method, the influences of the quantum dot’s polarization state and structural parameters on the coupling effect of fluorescence and structure are studied and the structure is optimized. Then, the micro-displacement of the fluorescent substance is detected by measuring the change in the optical power output of the coupled structure. Finally, the factors affecting the sensitivity of the sensors are studied. The results show that, compared with the traditional method, when the refractive index of the nanofluidic channel-resonant cavity coupling structure is in the 2.8~3.3 range, the structure can sense of the micro-displacement of a fluorescent substance with high accuracy. The results also show that the sensing sensitivity can be further improved by reducing the distance between the nanofluidic channel and the resonant cavity.

     

  • loading
  • [1]
    陈飘飘, 邢怡晨, 刘洋, 等. 基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器[J]. 分析化学,2020,48(1):83-89.

    CHEN P P, XING Y CH, LIU Y, et al. DNA Quantum Dots@Polydopamine as a fluorescent sensor for cysteine detection based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 83-89. (in Chinese)
    [2]
    MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446. doi: 10.1038/nmat1390
    [3]
    杜方凯, 张慧, 谭学才, 等. 基于氮掺杂石墨烯量子点/硫化镉纳米晶电化学发光传感器检测硫化氢[J]. 分析化学,2020,48(2):240-247.

    DU F K, ZHANG H, TAN X C, et al. Detection of hydrogen sulfide based on nitrogen-doped graphene quantum dots/cadmium sulfide nanocrystals electrochemiluminescence sensor[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 240-247. (in Chinese)
    [4]
    康倩文, 张国, 柴瑞涛, 等. 基于碳纳米点荧光增强检测铝离子[J]. 分析化学,2019,47(12):1901-1908.

    KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908. (in Chinese)
    [5]
    陈蜜, 岳仁叶, 李智, 等. 串联的纳米传感器用于癌细胞中miRNA的超灵敏检测[J]. 分析化学,2020,48(1):40-48.

    CHEN M, YUE R Y, LI ZH, et al. Cascaded nanosensors for ultrasensitive detection of miRNA in cancer cells[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 40-48. (in Chinese)
    [6]
    GUASTO J S, BREUER K S. High-speed quantum dot tracking and velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2009, 47(6): 1059. doi: 10.1007/s00348-009-0700-z
    [7]
    CUI L, ZHANG T, MORGAN H. Optical particle detection integrated in a dielectrophoretic lab-on-a-chip[J]. Journal of Micromechanics and Microengineering, 2002, 12(1): 7-12. doi: 10.1088/0960-1317/12/1/302
    [8]
    HISHIDA K, SAKAKIBARA J. Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity and temperature fields[J]. Experiments in Fluids, 2000, 29(1): S129-S140.
    [9]
    STRUBEL V, SIMOENS S, VERGNE P, et al. Fluorescence tracking and μ-PIV of individual particles and lubricant flow in and around lubricated point contacts[J]. Tribology Letters, 2017, 65(3): 75. doi: 10.1007/s11249-017-0859-z
    [10]
    VARELA S, BALAGUÉ I, SANCHO I, et al. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV)[J]. Journal of Microencapsulation, 2016, 33(2): 153-161. doi: 10.3109/02652048.2016.1142016
    [11]
    MEINHART C D, WERELEY S T, SANTIAGO J G. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5): 414-419. doi: 10.1007/s003480050366
    [12]
    SANTIAGO J G, WERELEY S T, MEINHART C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 1998, 25(4): 316-319. doi: 10.1007/s003480050235
    [13]
    JIN S, HUANG P, PARK J, et al. Near-surface velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2004, 37(6): 825-833. doi: 10.1007/s00348-004-0870-7
    [14]
    SADR R, YODA M, ZHENG Z, et al. An experimental study of electro-osmotic flow in rectangular microchannels[J]. Journal of Fluid Mechanics, 2004, 506: 357-367. doi: 10.1017/S0022112004008626
    [15]
    ZETTNER C, YODA M. Particle velocity field measurements in a near-wall flow using evanescent wave illumination[J]. Experiments in Fluids, 2003, 34(1): 115-121. doi: 10.1007/s00348-002-0541-5
    [16]
    POUYA S, KOOCHESFAHANI M, SNEE P, et al. Single Quantum Dot (QD) imaging of fluid flow near surfaces[J]. Experiments in Fluids, 2005, 39(4): 784-786. doi: 10.1007/s00348-005-0004-x
    [17]
    OKAMOTO K, NISHIO S, SAGA T, et al. Standard images for particle-image velocimetry[J]. Measurement Science and Technology, 2000, 11(6): 685-691. doi: 10.1088/0957-0233/11/6/311
    [18]
    FOREMAN M R, SWAIM J D, VOLLMER F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 2015, 7(2): 168-240. doi: 10.1364/AOP.7.000168
    [19]
    BUTT M A, KHONINA S N, KAZANSKIY N L. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing[J]. Journal of Modern Optics, 2018, 65(9): 1135-1140. doi: 10.1080/09500340.2018.1427290
    [20]
    WHITE I M, ZHU H Y, SUTER J D, et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators[J]. IEEE Sensors Journal, 2007, 7(1): 28-35. doi: 10.1109/JSEN.2006.887927
    [21]
    KWON M S, STEIER W H. Microring-resonator-based sensor measuring both the concentration and temperature of a solution[J]. Optics Express, 2008, 16(13): 9372-9377. doi: 10.1364/OE.16.009372
    [22]
    LIU ZH H, LIU L, ZHU Z D, et al. Whispering gallery mode temperature sensor of liquid microresonastor[J]. Optics Letters, 2016, 41(20): 4649-4652. doi: 10.1364/OL.41.004649
    [23]
    XU H T, HAFEZI M, FAN J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures[J]. Optics Express, 2014, 22(3): 3098-3104. doi: 10.1364/OE.22.003098
    [24]
    KOCH B, YI Y, ZHANG J Y, et al. Reflection-mode sensing using optical microresonators[J]. Applied Physics Letters, 2009, 95(20): 201111. doi: 10.1063/1.3263143
    [25]
    LI B B, CLEMENTS W R, YU X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14657-14662. doi: 10.1073/pnas.1408453111
    [26]
    ZHI Y Y, YU X CH, GONG Q H, et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 2017, 29(12): 1604920. doi: 10.1002/adma.201604920
    [27]
    FERN R E, ONTON A. Refractive index of AlAs[J]. Journal of Applied Physics, 1971, 42(9): 3499-3500. doi: 10.1063/1.1660760
    [28]
    YEE K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
    [29]
    CHEN ZH H, WANG Y, YANG Y B, et al. Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface[J]. Nanoscale, 2014, 6(24): 14708-14715. doi: 10.1039/C4NR03851G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(1198) PDF downloads(83) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return