Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
WU Hai-bin, WEI Xi-ying, WANG Ai-li, YUJI Iwahori. X-ray security inspection images classification combined octave convolution and bidirectional GRU[J]. Chinese Optics, 2020, 13(5): 1138-1146. doi: 10.37188/CO.2020-0073
Citation: WU Hai-bin, WEI Xi-ying, WANG Ai-li, YUJI Iwahori. X-ray security inspection images classification combined octave convolution and bidirectional GRU[J]. Chinese Optics, 2020, 13(5): 1138-1146. doi: 10.37188/CO.2020-0073

X-ray security inspection images classification combined octave convolution and bidirectional GRU

doi: 10.37188/CO.2020-0073
Funds:  Supported by National Natural Science Foundation of China (No. 61671190)
More Information
  • Corresponding author: aili925@hrbust.edu.cn
  • Received Date: 23 Apr 2020
  • Rev Recd Date: 15 Jun 2020
  • Available Online: 16 Sep 2020
  • Publish Date: 01 Oct 2020
  • Due to the disadvantages of low accuracy and slow speed in the active vision security inspection method, it is not suitable for real-time security inspection. Aiming at this problem, we propose an x-ray inspection image classification algorithm combining octave convolution (OctConv) with attention-based bidirectional Gate Recurrent Unit (GRU). Firstly, OctConv is introduced to replace the traditional convolution operation to divide the input feature vector into high and low frequency, and reduce the resolution of low frequency features, effectively extracting the features of security image and reducing the spatial redundancy. Then, the feature weight can be adjusted by dynamic learning through attention-based bidirectional GRU to improve the classification accuracy of threat objects. Finally, a lot of experimental results on SIXRay dataset show that the classification accuracy, AUC value and PRE of 8000 test samples are 98.73%, 91.39% and 85.44%, respectively, with a time of 36.80 seconds. Compared with the current mainstream model, the proposed algorithm can improve the performance and speed of threat objects recognition in X-ray security images.

     

  • loading
  • 陈志强, 张丽, 金鑫. X射线安全检查技术研究新进展[J]. 科学通报,2017,62(13):1350-1365. doi: 10.1360/N972016-00698

    CHEN ZH Q, ZHANG L, JIN X. Recent progress on X-ray security inspection technologies[J]. Chinese Science Bulletin, 2017, 62(13): 1350-1365. (in Chinese) doi: 10.1360/N972016-00698
    CAO S S, LIU Y H, SONG W W, et al.. Toward human-in-the-loop prohibited item detection in X-ray baggage images[C]. Proceedings of 2019 Chinese Automation Congress (CAC), IEEE, 2019: 4360-4364.
    LYU SH J, TU X, LU Y. X-Ray image classification for parcel inspection in high-speed sorting line[C]. Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, 2018: 1-5.
    费彬, 孙京阳, 张俊举, 等. 基于稀疏处理的多能X射线分离成像[J]. 光学 精密工程,2017,25(4):1106-1111. doi: 10.3788/OPE.20172504.1106

    FEI B, SUN J Y, ZHANG J J, et al. Separation of multi-energy X-ray imaging based on sparse processing[J]. Optics and Precision Engineering, 2017, 25(4): 1106-1111. (in Chinese) doi: 10.3788/OPE.20172504.1106
    王旖旎. 基于Inception V3的图像状态分类技术[J]. 液晶与显示,2020,35(4):389-394. doi: 10.3788/YJYXS20203504.0389

    WANG Y N. Image classification technology based on inception V3[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 389-394. (in Chinese) doi: 10.3788/YJYXS20203504.0389
    CHOUAI M, MERAH M, SANCHO-GOMEZ J L, et al. Supervised feature learning by adversarial autoencoder approach for object classification in dual X-Ray image of luggage[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1101-1112. doi: 10.1007/s10845-019-01498-5
    张万征, 胡志坤, 李小龙. 基于LeNet-5的卷积神经图像识别算法[J]. 液晶与显示,2020,35(5):486-490. doi: 10.3788/YJYXS20203505.0486

    ZHANG W ZH, HU ZH K, LI X L. Convolutional neural image recognition algorithm based on LeNet-5[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(5): 486-490. (in Chinese) doi: 10.3788/YJYXS20203505.0486
    刘恋秋. 基于深度卷积生成对抗网络的图像识别算法[J]. 液晶与显示,2020,35(4):383-388. doi: 10.3788/YJYXS20203504.0383

    LIU L Q. Image recognition algorithms based on deep convolution generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 383-388. (in Chinese) doi: 10.3788/YJYXS20203504.0383
    龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报,2019,39(3):0301002. doi: 10.3788/AOS201939.0301002

    GONG X, WU L, XIE ZH, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019, 39(3): 0301002. (in Chinese) doi: 10.3788/AOS201939.0301002
    贠卫国, 史其琦, 王民. 基于深度卷积神经网络的多特征融合的手势识别[J]. 液晶与显示,2019,34(4):417-422. doi: 10.3788/YJYXS20193404.0417

    YUN W G, SHI Q Q, WANG M. Multi-feature fusion gesture recognition based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 417-422. (in Chinese) doi: 10.3788/YJYXS20193404.0417
    LIU J Y, LENG X X, LIU Y. Deep convolutional neural network based object detector for X-Ray baggage security imagery[C]. Proceedings of 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2019: 1757-1761.
    AKCAY S, KUNDEGORSKI M E, WILLCOCKS C G, et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2203-2215. doi: 10.1109/TIFS.2018.2812196
    ZHU Y, ZHANG H G, AN J Y, et al. GAN-based data augmentation of prohibited item X-ray images in security inspection[J]. Optoelectronics letters, 2020, 16(3): 225-229.
    AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]. Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019.
    AYDIN I, KARAKOSE M, AKIN E. A new approach for baggage inspection by using deep convolutional neural networks[C]. Proceedings of 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), IEEE, 2018: 1-6.
    MERY D, SVEC E, ARIAS M, et al. Modern computer vision techniques for X-Ray testing in baggage inspection[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2017, 47(4): 682-692. doi: 10.1109/TSMC.2016.2628381
    GALVEZ R L, DADIOS E P, BANDALA A A, et al.. Threat object classification in X-ray images using transfer learning[C]. Proceedings of 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), IEEE, 2018: 1-5.
    HOWARD A G, ZHU M L, CHEN B, et al.. MobileNets: efficient convolutional neural networks for mobile vision applications[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.
    IANDOLA F N, HAN S, MOSKEWICZ M W, et al.. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[C]. Proceedings of 2017 International Conference on Learning Representations (ICLR), Toulon, France, 2017.
    CHEN Y P, FAN H Q, XU B, et al.. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, IEEE, 2019: 3434-3443.
    CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, 2014: 1724-1734.
    董潇潇, 何小海, 吴晓红, 等. 基于注意力掩模融合的目标检测算法[J]. 液晶与显示,2019,34(8):825-833. doi: 10.3788/YJYXS20193408.0825

    DONG X X, HE X H, WU X H, et al. Object detection algorithm based on attention mask fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 825-833. (in Chinese) doi: 10.3788/YJYXS20193408.0825
    MIAO C J, XIE L X, WAN F, et al.. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2019: 2119-2128.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al.. Rethinking the inception architecture for computer vision[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 2818-2826.
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, 2014.
    HE K M, ZHANG X Y, REN SH Q, et al.. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016.
    HUANG G, LIU ZH, VAN DER MAATEN L, et al.. Densely connected convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.
    WANG A L, WANG M H, JIANG K Y, et al.. A novel lidar data classification algorithm combined densenet with STN[C]. Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019: 2483-2486.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article views(3077) PDF downloads(204) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return