Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
GAO Wei-ke, DU Xiao-ping, WANG Yang, YANG Bu-yi. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. doi: 10.37188/CO.2020-0049
Citation: GAO Wei-ke, DU Xiao-ping, WANG Yang, YANG Bu-yi. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. doi: 10.37188/CO.2020-0049

Review of laser speckle target detection technology

doi: 10.37188/CO.2020-0049
Funds:  Supported by National Natural Science Foundation of China (No. 61805284)
More Information
  • Corresponding author: youngerpla@163.com
  • Received Date: 2020-03-31
  • Rev Recd Date: 2020-05-11
  • Available Online: 2020-10-29
  • Publish Date: 2020-12-01
  • Target detection technology based on laser speckles is a kind of laser detection technology that has been ignored for a long time. In this technology, the laser speckle, which is regarded as noise in the traditional laser detection technology, is used as a new source of information. By analyzing the formation mechanism of a laser speckle pattern, the relationship between the statistical characteristics and the physical characteristics of the target is explored, and the effective analysis and inversion methods are combined to obtain the target’s shape, size, surface roughness and dynamic parameters. Compared with traditional laser detection technology, target detection technology based on laser speckles has a simple structure, has low optical system requirements, is sensitive to the physical and fretting characteristics of the target’s surface, and has been widely used in aerospace, medicine, industry, military and other fields. This paper classifies and summarizes the various kinds of speckle-based target detection technologies from recent years, compares and analyzes their applications, advantages and disadvantages, as well as the environmental restrictions. Finally, this paper prospects the trend for the future development of target detection methods based on laser speckles.
  • loading
  • [1]
    郭冠军, 邵芸. 地面对激光雷达信号散射的统计研究[J]. 物理学报,2001,51(2):228-234.

    GUO G J, SHAO Y. Statistical properties of the back-scattered signals from ground in laser radar applications[J]. Acta Physica Sinica, 2001, 51(2): 228-234. (in Chinese)
    李自勤, 王骐, 李琦, 等. 激光成像雷达系统中散斑像的乘法模型及其滤除[J]. 中国激光,2003,30(8):717-720.

    LI Z Q, WANG Q, LI Q, et al. Multiplication model of speckle image and speckle suppression in imaging lidar[J]. Chinese Journal of Lasers, 2003, 30(8): 717-720. (in Chinese)
    郭冠军, 邵芸. 激光散斑效应对激光雷达探测性能的影响[J]. 物理学报,2004,53(7):2089-2093.

    GUO G J, SHAO Y. Rough surfaces induced speckle effects on detection performance of pulsed laser radar[J]. Acta Physica Sinica, 2004, 53(7): 2089-2093. (in Chinese)
    LAURENZIS M, LUTZ Y, CHRISTNACHER F, et al. Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry[J]. Optical Engineering, 2012, 51(6): 061302. doi: 10.1117/1.OE.51.6.061302
    王锐, 史瑞新. 基于多光束照明的回波光场散斑抑制机理[J]. 光学 精密工程,2017,25(9):2333-2338. doi: 10.3788/OPE.20172509.2333

    WANG R, SHI R X. Suppression mechanics of returning wave speckle with multibeams illumination[J]. Optics and Precision Engineering, 2017, 25(9): 2333-2338. (in Chinese) doi: 10.3788/OPE.20172509.2333
    任淑艳, 张琢, 刘国栋, 等. 精密测量中激光成像系统散斑的抑制因素[J]. 光学 精密工程,2007,15(3):331-336.

    REN SH Y, ZHANG ZH, LIU G D, et al. Restraining speckle of laser imaging system in accurate measurement[J]. Optics and Precision Engineering, 2007, 15(3): 331-336. (in Chinese)
    宋少华, 仝召民. 用于激光背光源电视的扫描分光与消散斑系统[J]. 光学 精密工程,2019,27(2):271-278. doi: 10.3788/OPE.20192702.0271

    SONG SH H, TONG ZH M. Scanning beam splitting and speckle reduction system for laser backlight TV[J]. Optics and Precision Engineering, 2019, 27(2): 271-278. (in Chinese) doi: 10.3788/OPE.20192702.0271
    王锐. 多束部分相干光抑制光强闪烁效应的仿真实验研究[J]. 发光学报,2014,35(7):835-839. doi: 10.3788/fgxb20143507.0835

    WANG R. Simulation experiment of using multiple partially coherent beams to limit laser intensity scintillation effect[J]. Chinese Journal of Luminescence, 2014, 35(7): 835-839. (in Chinese) doi: 10.3788/fgxb20143507.0835
    FUJII H, ASAKURA T. Effect of surface roughness on the statistical distribution of image speckle intensity[J]. Optics Communications, 1974, 11(1): 35-38. doi: 10.1016/0030-4018(74)90327-7
    GEORGE N, JAIN A. Space and wavelength dependence of speckle intensity[J]. Applied Physics, 1974, 4(3): 201-212. doi: 10.1007/BF00884230
    GOODMAN J W. Dependence of image speckle contrast on surface roughness[J]. Optics Communications, 1975, 14(3): 324-327. doi: 10.1016/0030-4018(75)90328-4
    ERDMANN J C, GELLERT R I. Speckle field of curved, rotating surfaces of Gaussian roughness illuminated by a laser light spot[J]. Journal of the Optical Society of America, 1976, 66(11): 1194-1204. doi: 10.1364/JOSA.66.001194
    GEORGE N. Speckle from rough, moving objects[J]. Journal of the Optical Society of America, 1976, 66(11): 1182-1194. doi: 10.1364/JOSA.66.001182
    YOSHIMURA T. Statistical properties of dynamic speckles[J]. Journal of the Optical Society of America A, 1986, 3(7): 1032-1054. doi: 10.1364/JOSAA.3.001032
    武颖丽, 吴振森. 旋转粗糙圆柱的激光散射功率谱分析[J]. 光学 精密工程,2012,20(12):2654-2660. doi: 10.3788/OPE.20122012.2654

    WU Y L, WU ZH S. Analysis of power spectra for laser scattering intensity on rotating cylinder targets[J]. Optics and Precision Engineering, 2012, 20(12): 2654-2660. (in Chinese) doi: 10.3788/OPE.20122012.2654
    FUJI H, ASAKURA T, SHINDO Y. Measurement of surface roughness properties by means of laser speckle techniques[J]. Optics Communications, 1976, 16(1): 68-72. doi: 10.1016/0030-4018(76)90052-3
    张耿. 粗糙目标激光散斑统计特性及微运动特征分析[D]. 西安: 西安电子科技大学, 2013.

    ZHANG G. Statistical properties of laser speckle from rough objects and analysis on micro-motion characteristic[D]. Xi’an: Xidian University, 2013. (in Chinese)
    TCHVIALEVA L, MARKHVIDA I, ZENG H SH, et al. Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile[J]. Optics and Lasers in Engineering, 2010, 48(7-8): 774-778. doi: 10.1016/j.optlaseng.2010.03.004
    LOUIE D C, TCHVIALEVA L, ZENG H SH, et al. Findings toward the miniaturization of a laser speckle contrast device for skin roughness measurements[J]. Proceedings of SPIE, 2017, 10037: 100370J.
    LEHMANN P. Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination[J]. Applied Optics, 1999, 38(7): 1144-1152. doi: 10.1364/AO.38.001144
    NIPPOLAINEN E, SEMENOV D V, KAMSHILIN A A, et al. Fast distance sensing by use of the speckle effect[J]. Proceedings of SPIE, 2005, 5856: 691-697. doi: 10.1117/12.612576
    GAO ZH, ZHAO X Z. On-line surface roughness measurement based on specular intensity component of speckle patterns[C]. Proceedings of 2008 International Conference on Information and Automation, IEEE, 2008: 1050-1055.
    赵博华, 王伯雄, 张金, 等. 粗糙金属表面光条中心提取方法[J]. 光学 精密工程,2011,19(9):2138-2145. doi: 10.3788/OPE.20111909.2138

    ZHAO B H, WANG B X, ZHANG J, et al. Extraction of laser stripe center on rough metal surface[J]. Optics and Precision Engineering, 2011, 19(9): 2138-2145. (in Chinese) doi: 10.3788/OPE.20111909.2138
    ZHAO X Z, GAO ZH. Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction[J]. Optics and Lasers in Engineering, 2009, 47(11): 1307-1316. doi: 10.1016/j.optlaseng.2009.04.012
    GAO ZH, ZHAO X Z. Roughness measurement of moving weak-scattering surface by dynamic speckle image[J]. Optics and Lasers in Engineering, 2012, 50(5): 668-677. doi: 10.1016/j.optlaseng.2011.11.014
    PRABHATHAN P, SONG CH L, HARIDAS A, et al. Intensity and contrast based surface roughness measurement approaches for rough and shiny surfaces[J]. Proceedings of SPIE, 2017, 10449: 1044912.
    PATZELT S, STÖBENER D, FISCHER A. Laser light source limited uncertainty of speckle-based roughness measurements[J]. Applied Optics, 2019, 58(23): 6436-6445. doi: 10.1364/AO.58.006436
    BERLASSO R G, QUINTIAN F P, REBOLLO M A, et al. Speckle size of light scattered from slightly rough cylindrical surfaces[J]. Applied Optics, 2002, 41(10): 2020-2027. doi: 10.1364/AO.41.002020
    DEV K, A. S. G P, ASWIN H, et al. Surface roughness measurement of additive manufactured samples using angular speckle correlation[J]. Proceedings of SPIE, 2017, 10449: 104492W.
    PRABHATHAN P, SONG CH L, HARIDAS A, et al. Experimental investigations and parametric studies of surface roughness measurements using spectrally correlated speckle images[J]. Proceedings of SPIE, 2017, 10449: 1044913.
    PATZELT S, STÖBENER D, STRÖBEL G, et al. Uncertainty of scattered light roughness measurements based on speckle correlation methods[J]. Proceedings of SPIE, 2017, 10329: 103291P.
    HARIDAS A, CRIVOI A, PRABHATHAN P, et al. Fractal speckle image analysis for surface characterization of aerospace structures[J]. Proceedings of SPIE, 2017, 10449: 104491T.
    XU D, YANG Q, DONG F, et al. Evaluation of surface roughness of a machined metal surface based on laser speckle pattern[J]. The Journal of Engineering, 2018, 2018(9): 773-778. doi: 10.1049/joe.2018.5057
    GEORGE N, LIVANOS A, ROTH J, et al. Remote sensing of large roughened spheres[J]. Optica Acta:International Journal of Optics, 1976, 23(5): 367-387. doi: 10.1080/713819273
    MARRON J C. Wavelength decorrelation of laser speckle from three-dimensional diffuse objects[J]. Optics Communications, 1992, 88(4-6): 305-308. doi: 10.1016/0030-4018(92)90046-T
    CRIMMINS T R, FIENUP J R, THELEN B J. Improved bounds on object support from autocorrelation support and application to phase retrieval[J]. Journal of the Optical Society of America A, 1990, 7(1): 3-13. doi: 10.1364/JOSAA.7.000003
    PAXMAN R G, MARRON J C. System and method for three-dimensional imaging of opaque objects using frequency diversity and an opacity constraint: US, 5627363[P]. 1997-05-06.
    SHIRLEY L G, ARIEL E D, HALLERMAN G R, et al. Advanced techniques for target discrimination using laser speckle[J]. The Lincoln Laboratory Journal, 1992, 5(3): 367-440.
    SHIRLEY L G, HALLERMAN G R. Applications of tunable lasers to laser radar and 3D imaging[R]. Lexington Massachusetts: MIT Lincoln Laboratory, 1996.
    SHIRLEY L G, HALLERMAN G R. Nonconventional 3D imaging using wavelength-dependent speckle[J]. The Lincoln Laboratory Journal, 1996, 9(2): 153-186.
    SHIRLEY L G, LO P A. Bispectral analysis of the wavelength dependence of speckle: remote sensing of object shape[J]. Journal of the Optical Society of America A, 1994, 11(3): 1025-1046. doi: 10.1364/JOSAA.11.001025
    FINI J M. Three dimensional image reconstruction from fourier magnitude measurements[D]. Cambridge, MA: Massachusetts Institute of Technology, 1997.
    SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 8265375[P]. 2012-09-11.
    SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 20170138722[P]. 2017-05-18.
    SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 10281257[P]. 2019-05-07.
    朱磊, 邵晓鹏. 散射成像技术的研究进展[J]. 光学学报,2020,40(1):0111005. doi: 10.3788/AOS202040.0111005

    ZHU L, SHAO X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005. (in Chinese) doi: 10.3788/AOS202040.0111005
    BERTOLOTTI J, VAN PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234. doi: 10.1038/nature11578
    KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790. doi: 10.1038/nphoton.2014.189
    WU T F, KATZ O, SHAO X P, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41(21): 5003-5006. doi: 10.1364/OL.41.005003
    ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910. doi: 10.1364/OE.23.033902
    HORISAKI R, TAKAGI R, TANIDA J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13): 13738-13743. doi: 10.1364/OE.24.013738
    TAKAGI R, HORISAKI R, TANIDA J. Object recognition through a multi-mode fiber[J]. Optical Review, 2017, 24(2): 117-120. doi: 10.1007/s10043-017-0303-5
    万剑华, 韩仲志. 多模式融合下的海洋溢油高光谱成像油种识别方法[J]. 发光学报,2016,37(4):473-480. doi: 10.3788/fgxb20163704.0473

    WAN J H, HAN ZH ZH. Oil spills identification using hyperspectral imaging based on multi-pattern method[J]. Chinese Journal of Luminescence, 2016, 37(4): 473-480. (in Chinese) doi: 10.3788/fgxb20163704.0473
    丁佳兴, 杨晓玉. 可见/近红外高光谱成像技术对鸡蛋种类无损判别[J]. 发光学报,2018,39(3):394-402. doi: 10.3788/fgxb20183903.0394

    DING J X, YANG X Y. Non-destructive discrimination of different kinds egg by Vis/NIR hyperspectral imaging technique[J]. Chinese Journal of Luminescence, 2018, 39(3): 394-402. (in Chinese) doi: 10.3788/fgxb20183903.0394
    VALENT E, SILBERBERG Y. Scatterer recognition via analysis of speckle patterns[J]. Optica, 2018, 5(2): 204-207. doi: 10.1364/OPTICA.5.000204
    LYU M, WANG H, LI G W, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.
    LEI X, HE L Y, TAN Y X, et al.. Direct object recognition without line-of-sight using optical coherence[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 11729-11738.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1280) PDF downloads(215) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint