Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
DU Rui-jian, GE Bao-zhen, CHEN Lei. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 2020, 13(5): 1055-1064. doi: 10.37188/CO.2020-0034
Citation: DU Rui-jian, GE Bao-zhen, CHEN Lei. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 2020, 13(5): 1055-1064. doi: 10.37188/CO.2020-0034

Texture mapping of multi-view high-resolution images and binocular 3D point clouds

Funds:  National Natural Science Foundation of China (No. 61535008)
More Information
  • Corresponding author: chenlei@tjcu.edu.cn
  • Received Date: 02 Mar 2020
  • Rev Recd Date: 08 Apr 2020
  • Available Online: 01 Sep 2020
  • Publish Date: 01 Oct 2020
  • Aiming at the fusion problem of binocular stereo vision reconstruction point cloud models and high-resolution texture images, a new texture mapping method is proposed. Adding a telephoto texture camera to the binocular stereo vision system to capture high-resolution texture images, the relationship between a texture image and a 3D point cloud model is obtained by matching the two-dimensional features of the high-resolution texture image and the binocular image. The binocular image is used as a bridge, thereby achieving the high-resolution mapping of high-rate texture images on 3D point cloud models. In view of the data redundancy of the overlapping parts of the multi-view texture images during mapping, a method of partitioning the guidance point cloud data is proposed, which effectively solves the problem. Through experimental verification, the proposed method can conveniently and accurately map multi-view texture images to binocular 3D point cloud models. Under experimental conditions, the texture of the 3D model can distinguish line pairs with an original line width of 0.157 mm, which is double the texture resolution of the 3D model directly generated by the binocular system, This verifies the effectiveness of the proposed multi-view high-resolution texture mapping method.

     

  • loading
  • HENG Y SH, WANG CH, QI Y. Key frame-based texture mapping for RGBD human reconstruction[C]. Proceedings of 2018 International Conference on Virtual Reality and Visualization (ICVRV), IEEE, 2018: 1-7.
    杨国林, 韩峰, 王丹英. 基于三维激光扫描技术的工程施工测量应用研究[J]. 中国水能及电气化,2015(2):20-23. doi: 10.3969/j.issn.1673-8241.2015.02.006

    YANG G L, HAN F, WANG D Y. Application research of engineering construction measurement based on three-dimensional laser scanning technology[J]. China Water Power &Electrification, 2015(2): 20-23. (in Chinese) doi: 10.3969/j.issn.1673-8241.2015.02.006
    纪文丽. 基于光栅投影方法的物体三维轮廓重构[D]. 大连: 大连理工大学, 2007.

    JI W L. Three dimensional profile reconstruction based on fringe projection[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    ZHU SH P, GAO Y. Noncontact 3-D coordinate measurement of cross-cutting feature points on the surface of a large-scale workpiece based on the machine vision method[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1874-1887. doi: 10.1109/TIM.2009.2030875
    郑少开, 卢启生, 张瑞菊, 等. 基于三维网格模型的点云分割方法[J]. 北京测绘,2019,33(8):916-919.

    ZHENG SH K, LU Q SH, ZHANG R J, et al. Segmentation of point cloud based on 3D mesh model[J]. Beijing Surveying and Mapping, 2019, 33(8): 916-919. (in Chinese)
    王莹, 王延杰, 周渝人, 等. 基于参数平面的自适应调和纹理映射算法[J]. 液晶与显示,2014,29(5):818-823. doi: 10.3788/YJYXS20142905.0818

    WANG Y, WANG Y J, ZHOU Y R, et al. Adaptive harmonic texture mapping algorithm based on harmonic parameter plane[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(5): 818-823. (in Chinese) doi: 10.3788/YJYXS20142905.0818
    HALLER H L, DIRNBERGER J, GIRETZLEHNER M, et al. “Understanding burns”: research project burn case 3D—overcome the limits of existing methods in burns documentation[J]. Burns, 2009, 35(3): 311-317. doi: 10.1016/j.burns.2008.07.010
    万燕, 王慧洁, 鲁俊. 基于三角网格模型的纹理映射研究[J]. 计算机应用与软件,2016,33(4):160-163, 201. doi: 10.3969/j.issn.1000-386x.2016.04.038

    WAN Y, WANG H J, LU J. On texture mapping based on triangular mesh model[J]. Computer Applications and Software, 2016, 33(4): 160-163, 201. (in Chinese) doi: 10.3969/j.issn.1000-386x.2016.04.038
    LIU L, STAMOS I. Automatic 3D to 2D registration for the photorealistic rendering of urban scenes[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision & Pattern Recognition, IEEE, 2005: 137-143.
    杨丽萍. 文物模型的简化与纹理映射研究[J]. 液晶与显示,2009,24(2):283-287. doi: 10.3969/j.issn.1007-2780.2009.02.025

    YANG L P. Simplification and texture mapping of cultural relic model[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(2): 283-287. (in Chinese) doi: 10.3969/j.issn.1007-2780.2009.02.025
    孙宇臣. 激光三维彩色数字化系统关键技术研究[D]. 天津: 天津大学, 2005.

    SUN Y CH. Study of key techniques of laser 3D and color digitization system[D]. Tianjin: Tianjin University, 2005. (in Chinese)
    孙新领, 谭志伟, 杨观赐. 双目立体视觉在人形机器人三维重建中的应用[J]. 现代电子技术,2016,39(8):80-84, 87.

    SUN X L, TAN ZH W, YANG G C. Application of binocular stereo vision in 3D reconstruction of humanoid robot[J]. Modern Electronics Technique, 2016, 39(8): 80-84, 87. (in Chinese)
    王晓南, 郑顺义. 基于激光扫描和高分辨率影像的文物三维重建[J]. 测绘工程,2009,18(6):53-55, 60. doi: 10.3969/j.issn.1006-7949.2009.06.015

    WANG X N, ZHENG SH Y. Three-dimensional reconstruction of antiques based on LIDAR and high-resolution images[J]. Engineering of Surveying and Mapping, 2009, 18(6): 53-55, 60. (in Chinese) doi: 10.3969/j.issn.1006-7949.2009.06.015
    赵琳敬. 三维点云智能进化拼接与表面纹理映射方法研究[D]. 天津: 天津大学, 2018.

    ZHAO L J. Research on 3D point cloud intelligent evolutionary registration and surface texture mapping method[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    ZHANG ZH Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    杨景豪, 刘巍, 刘阳, 等. 双目立体视觉测量系统的标定[J]. 光学精密工程,2016,24(2):300-308. doi: 10.3788/OPE.20162402.0300

    YANG J H, LIU W, LIU Y, et al. Calibration of binocular vision measurement system[J]. Optics and Precision Engineering, 2016, 24(2): 300-308. (in Chinese) doi: 10.3788/OPE.20162402.0300
    TSAI R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal on Robotics and Automation, 1987, 3(4): 323-344. doi: 10.1109/JRA.1987.1087109
    KAEHLER A, BRADSKI G. Learning Open CV 3: Computer Vision in C++with the OpenCV Library[M]. Sebastopol: O'Reilly Media, Inc., 2016.
    张来刚, 魏仲慧, 何昕, 等. 面向低纹理图像的快速立体匹配[J]. 液晶与显示,2013,28(3):450-458. doi: 10.3788/YJYXS20132803.0450

    ZHANG L G, WEI ZH H, HE X, et al. New stereo matching method based edge extraction[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 450-458. (in Chinese) doi: 10.3788/YJYXS20132803.0450
    汪泽伟, 于有光, 杨付正. 基于HTC Vive的全景视频显示质量评估[J]. 液晶与显示,2018,33(1):85-91. doi: 10.3788/YJYXS20183301.0085

    WANG Z W, YU Y G, YANG F ZH. Panoramic video display quality assessment based on HTC Vive[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1): 85-91. (in Chinese) doi: 10.3788/YJYXS20183301.0085
    ZHANG G X, ZENG ZH, ZHANG SH W, et al. SIFT matching with CNN evidences for particular object retrieval[J]. Neurocomputing, 2017, 238: 399-409. doi: 10.1016/j.neucom.2017.01.081
    张昊骕, 朱晓龙, 胡新洲, 等. 基于SURF和SIFT特征的视频镜头分割算法[J]. 液晶与显示,2019,34(5):521-529. doi: 10.3788/YJYXS20193405.0521

    ZHANG H S, ZHU X L, HU X ZH, et al. Shot segmentation technology based on SURF features and SIFT features[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 521-529. (in Chinese) doi: 10.3788/YJYXS20193405.0521
    LOWE D G. Object recognition from local scale-invariant features[C]. Proceedings of IEEE International Conference on Computer Vision, IEEE, 1999: 1150-1157.
    BAY H, TUYTELAARS T, VAN GOOL L. Surf: speeded up robust features[C]. Proceedings of the European Conference on Computer Vision, Springer, 2006, 3951: 404-417.
    RUBLEE E, RABAUD V, KONOLIGE K, et al.. ORB: an efficient alternative to SIFT or SURF[C]. Proceedings of 2011 International Conference on Computer Vision, IEEE, 2011: 2564-2571.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(1997) PDF downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return