Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
WEN Kang, LI He-zhang, MA Zhuang, GAO Li-hong, WANG Fu-chi, LI Wen-zhi. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Optics, 2020, 13(5): 1023-1031. doi: 10.37188/CO.2020-0022
Citation: WEN Kang, LI He-zhang, MA Zhuang, GAO Li-hong, WANG Fu-chi, LI Wen-zhi. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Optics, 2020, 13(5): 1023-1031. doi: 10.37188/CO.2020-0022

Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser

doi: 10.37188/CO.2020-0022
Funds:  Supported by National Natural Science Foundation of China (No. 52073029)
More Information
  • Corresponding author: hstrong929@bit.edu.cn
  • Received Date: 21 Feb 2020
  • Rev Recd Date: 25 Mar 2020
  • Available Online: 10 Sep 2020
  • Publish Date: 01 Oct 2020
  • In order to investigate the temperature response and thermal damage of a 6061 aluminum alloy after variations in spot size of continuous laser irradiation, a three-dimensional physical model under laser irradiation was established based on ANSYS finite element software. First, we used different laser parameters to carry out laser irradiation experiments, and then, based on the collected temperature and front surface scattered light intensity data, we calculated the dynamic changes in the absorptivity of the target during laser irradiation. Finally, the optimized model was used to analyze the temperature rise characteristics of the target irradiated by lasers at different spot sizes. The research results show that the absorption rate of the material increases with an increase in temperature under 1000 W/cm2 laser irradiation. Due to the localized characteristics of laser loading, lateral thermal diffusion affects the longitudinal temperature rise, and its effect becomes smaller when the spot is larger, as related with the alloy’s thermal diffusion length. For the 6061 aluminum alloy material with a thickness of 4 mm, when the spot size is greater than 10 cm, the effect of the spot’s size is negligible, and the time threshold of fusion damage on the back surface of the target remains unchanged at 2.6 s.

     

  • loading
  • 孟献丰, 陆春华, 倪亚茹, 等. 激光技术的应用与防护[J]. 红外与激光工程,2005,34(2):136-141. doi: 10.3969/j.issn.1007-2276.2005.02.003

    MENG X F, LU CH H, NI Y R, et al. Application and protection of laser technology[J]. Infrared and Laser Engineering, 2005, 34(2): 136-141. (in Chinese) doi: 10.3969/j.issn.1007-2276.2005.02.003
    罗曦, 陈培锋, 王英, 等. 新型高功率激光加工用激光光束展宽方法的探索性研究[J]. 中国激光,2011,38(4):0403003. doi: 10.3788/CJL201138.0403003

    LUO X, CHEN P F, WANG Y, et al. An exploratory investigation of wide-band beam shaping for high power laser processing[J]. Chinese Journal of Lasers, 2011, 38(4): 0403003. (in Chinese) doi: 10.3788/CJL201138.0403003
    刘友强, 曹银花, 李景, 等. 激光加工用5 kW光纤耦合半导体激光器[J]. 光学 精密工程,2015,23(5):1279-1287. doi: 10.3788/OPE.20152305.1279

    LIU Y Q, CAO Y H, LI J, et al. 5 kW fiber coupling diode laser for laser processing[J]. Optics and Precision Engineering, 2015, 23(5): 1279-1287. (in Chinese) doi: 10.3788/OPE.20152305.1279
    王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报,2015,36(1):1-19.

    WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19. (in Chinese)
    陈军燕, 卢慧玲, 杨春才. 美军海上激光武器发展研究[J]. 飞航导弹,2014(11):67-72.

    CHEN J Y, LU H L, YANG CH C. Research on the development of US marine laser weapons[J]. Aerodynamic Missile Journal, 2014(11): 67-72. (in Chinese)
    刘铭. 国外激光武器技术的发展[J]. 舰船电子工程,2011,31(4):18-23. doi: 10.3969/j.issn.1627-9730.2011.04.005

    LIU M. Development of the laser weapon technology abroad[J]. Ship Electronic Engineering, 2011, 31(4): 18-23. (in Chinese) doi: 10.3969/j.issn.1627-9730.2011.04.005
    黄勇, 刘杰. 高能激光武器的杀伤机理及主要特性分析[J]. 光学与光电技术,2004,2(5):20-23. doi: 10.3969/j.issn.1672-3392.2004.05.007

    HUANG Y, LIU J. Analysis on kill mechanism and characteristics of high energy laser weapon[J]. Optics &Optoelectronic Technology, 2004, 2(5): 20-23. (in Chinese) doi: 10.3969/j.issn.1672-3392.2004.05.007
    乔相信, 成艺光, 唐恩凌, 等. 飞秒脉冲激光辐照FRAM诱发的毁伤效应及热演化[J]. 发光学报,2019,40(6):815-825. doi: 10.3788/fgxb20194006.0815

    QIAO X X, CHENG Y G, TANG E L, et al. Damage effects and thermal evolution of FRAM irradiated by femtosecond pulsed laser[J]. Chinese Journal of Luminescence, 2019, 40(6): 815-825. (in Chinese) doi: 10.3788/fgxb20194006.0815
    张江华. 高能激光武器毁伤机理及其防护技术[J]. 中国科技信息,2008(20):37, 39.

    ZHANG J H. Damage mechanism and protection technology of high energy laser weapon[J]. China Science and Technology Information, 2008(20): 37, 39. (in Chinese)
    READY J F. Effects of High-power Laser Radiation[M]. New York: Academic Press, 1971.
    陈彦北, 陆建, 倪晓武. 激光作用金属板材的温度场和热应力场[J]. 华中科技大学学报(自然科学版),2007,35(S1):129-132.

    CHEN Y B, LU J, NI X W. Temperature and thermal stress fields during the laser irradiating a metal plate[J]. Journal of Huazhong University of Science &Technology (Natural Science Edition), 2007, 35(S1): 129-132. (in Chinese)
    钱秋冬, 汪庆桃, 钱浩勇. 激光辐照过程中材料吸收率的理论研究[C]. 第28届全国结构工程学术会议论文集(第Ⅲ册), 中国力学学会结构工程专业委员会, 2019: 459-464.

    QIAN Q D, WANG Q T, QIAN H Y. Theoretical study on absorption rate of materials during laser irradiation[C]. Proceedings of the 28th National Conference on Structural Engineering (Volume Ⅲ), Structural Engineering Committee of Chinese Society of Mechanics, 2019: 459-464. (in Chinese)
    张英聪, 沈华, 朱日宏. 连续激光辐照材料的三维温度场[J]. 中国激光,2013,40(8):0806002. doi: 10.3788/CJL201340.0806002

    ZHANG Y C, SHEN H, ZHU R H. Three-dimensional temperature field of material irradiated by continuous wave laser[J]. Chinese Journal of Lasers, 2013, 40(8): 0806002. (in Chinese) doi: 10.3788/CJL201340.0806002
    蒙文, 张文杰, 李云霞, 等. 切向气流作用下激光辐照对尼龙材料的热烧蚀规律[J]. 光学 精密工程,2017,25(2):351-357. doi: 10.3788/OPE.20172502.0351

    MENG W, ZHANG W J, LI Y X, et al. Thermal ablation law of laser irradiation on nylon materials under tangential airflow[J]. Optics and Precision Engineering, 2017, 25(2): 351-357. (in Chinese) doi: 10.3788/OPE.20172502.0351
    LEE K C, BAEK W K, KWON H, et al. Analysis of melt-through process of 1.07 μm continuous wave high power laser irradiation on metal[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1745-1752. doi: 10.1007/s12206-013-0425-z
    SIHN S, CHILDERS L B, WALTERS C T, et al. Computational and experimental study on laser heating of a Ni-based metal alloy[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1034-1043. doi: 10.1016/j.ijheatmasstransfer.2016.06.061
    宋乃秋. 高能激光武器多物理场仿真建模[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    SONG N Q. Multiple Physical Modeling and Simulation of High Energy Laser Weapon[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    王振宝, 吴勇, 杨鹏翎, 等. 强激光辐照铝靶温度分布数值模拟及实验研究[J]. 红外与激光工程,2014,43(7):2061-2065. doi: 10.3969/j.issn.1007-2276.2014.07.002

    WANG ZH B, WU Y, YANG P L, et al. Numerical simulation and experiment on temperature fields distribution of aluminum target under intensive laser[J]. Infrared and Laser Engineering, 2014, 43(7): 2061-2065. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.07.002
    王宇, 张腾, 叶晓凤, 等. 6061铝合金搅拌摩擦焊接温度场及性能分析[J]. 电焊机,2014,44(10):152-157.

    WANG Y, ZHANG T, YE X F, et al. Research in the temperature field and mechanical properties of 6061 Aluminum FSW joint[J]. Electric Welding Machine, 2014, 44(10): 152-157. (in Chinese)
    张鹏波. 1064 nm重频激光辐照复合金属温度场的研究[D]. 长春: 长春理工大学, 2019.

    ZHANG P B. Temperature field of composite metal irradiated by 1064 nm repetitive laser[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese)
    DENG A Y, ZHONG ZH, WANG E G, et al.. Stress behavior of incoloy 800 superalloy in slab continuous casting process[C]. MARQUIS F. Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Cham: Springer, 2013: 2651-2658.
    吴圣川. 铝合金激光—电弧复合焊研究及其温度场的数值模拟[D]. 武汉: 华中科技大学, 2005.

    WU SH CH. A study on laser-arc hybrid welding for aluminum alloy and numerical simulation for the temperature field[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese)
    巩水利. 先进激光加工技术[M]. 北京: 航空工业出版社, 2016.

    GONG SH L. Advanced Laser Materials Processing Technology[M]. Beijing: Aviation Industry Press, 2016. (in Chinese)
    王贵兵, 罗飞, 刘仓理. 大气环境下重复频率激光辐照45#钢反射率变化分析[J]. 强激光与粒子束,2006,18(2):181-183.

    WANG G B, LUO F, LIU C L. Reflectance change of 45# steel irradiated by laser in atmosphere[J]. High Power Laser and Particle Beams, 2006, 18(2): 181-183. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views(1851) PDF downloads(102) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return