留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离子体激元的若干新应用

雷建国 刘天航 林景全 高勋 厉宝增

雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学(中英文), 2010, 3(5): 432-439.
引用本文: 雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学(中英文), 2010, 3(5): 432-439.
LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.
Citation: LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.

表面等离子体激元的若干新应用

基金项目: 

国家自然科学基金资助项目(No.60978014)

详细信息
    作者简介:

    雷建国(1979—),男,讲师,博士研究生,主要从事飞秒激光、表面等离子体等相关领域的研究。 E-mail:lei303@163.com

  • 中图分类号: O431.1; O439

New applications of surface plasmon polaritons

  • 摘要: 表面等离子体激元(SPPs)是在金属和介质界面传播的一种波动模式。本文首先叙述了SPPs的相关特性和激发方式,给出了一种基于表面等离子体激元共振(SPR)场增强原理产生相干极紫外辐射的方法,利用该方法可极大地提高光源的光子流量。分析了SPPs在生物及医疗领域的新应用,并对其在治疗癌症方面的技术原理进行了讨论。介绍了SPPs在新型光源和能源领域的发展和应用情况,综述了SPPs在太阳能电池、光子芯片以及集成电路方面的新工艺和新技术,包括最近几年来所取得的一些重要成果。最后讨论了SPPs在光存储方面的快速发展和巨大贡献。

     

  • [1] RAETHER H. Surface Plasmons. Springer Tracts in Modern Physics[M]. Berlin:Springer,1988. [2] FAINMAN Y,TETZ K,ROKITISKI R,et al.. Surface plasmonic fields in nanophotonics[J]. Opt. Photonics News,2006,17(7):24-29. [3] KIK P G,BRONGERSMA M L. Surface Plasmon Nanophotonics[M]. Berlin:Springer,2007. [4] SAMBLES J R,BRADBERY G W,YANG F Z. Optical-excitation of surface-plasmons:an introduction[J]. Contemp. Phys.,1991,32(3):173-183. [5] ZAYATS A V,SMOLYANINOV I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons[J]. J. Opt. A,2003,5:S16-S50. [6] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [7] STOCKMAN M I,KLING M,KLEINEBERG U,et al.. Attosecond nanoplasmonic-field microscope[J]. Nature Photonics,2007,1:539-543. [8] KIM S,JIN J,KIM Y,et al.. High harmonic generation by resonant plasmon field enhancement[J]. Nature,2008,453:757-760. [9] HU W Q,LIANG E J,DING P,et al.. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial[J]. Opt. Express,2009,17(24):21843-21849. [10] LIU G L,LU Y,KIM J,et al.. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect[J]. Nano Lett.,2005,5(1):119-124. [11] KNEIPP K,WANG Y,KNEIPP H,et al.. Single molecule detection using surface-enhanced Raman scattering(SERS)[J]. Phys. Rev. Lett.,1997,78(9):1667-1670. [12] LIEBERG B,NYLANDER C,LUNDSTRM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [13] WILSON W D. Analyzing biomolecular interactions[J]. Science,2002,295(5562):2103-2105. [14] LEE J L. Better living through plasmonics[J]. Science,2009,176#10:26. [15] ATWATER H A. The promise of plasmonics[J]. Scientific American Magazine, 2007:56-63. [16] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [17] OKAMOTO K,NIKI I,et al.. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J]. Appl. Phys. Lett.,2005,87:071102. [18] KOLLER D M,HOHENAU A,et al.. Organic plasmon-emitting diode[J]. Nature Photon,2008,2:684-687. [19] WALTERS R J,van LOON R V A,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Materials,2009,9:21-25 [20] ANDREW P,BARNES W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science,2004,306:1002-1005. [21] HEIDEL T D,MAPEL J K,CELEBI K,et al.. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices[J]. Appl. Phys. Lett.,2007,91:093506/1-093506/3. [22] CATCHPOLE K R,POLMAN A. Plasmonic solar cells[J]. Optics Express,2008,16(26):21793-21800. [23] ATWATER H A,POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials,2010,9:205-213. [24] ZIA R,SCHULLER J A,CHANDRAN A,et al.. Plasmonics:the next chip-scale technology[J]. Materials Today,2006,9(7-8):20-27. [25] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [26] STEFAN A M,HARRY A A. Plasmonics:localization and guiding of electromagnetic energy in metal/dielectric structures[J]. J. Appl. Phys.,2005,98:011101-011110. [27] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [28] HECHT B,BIELEFELDT H,NOVOTNY L,et al.. Local excitation, scattering, and interference of surface plasmons[J]. Phys. Rev. Lett.,1996,77(9):1889-1892. [29] PENDRY J. Enhanced:playing tricks with light[J]. Science,1999,285:1687-1688. [30] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [31] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX W,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [32] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [33] ZIJLSTRA P,CHON J W M,GU M,et al.. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [34] MANSURIPUR M,ZAKHARIAN A R,LESUFFLEUR A,et al.. Plasmonic nano-structures for optical data storage[J]. Opt. Express,2009,17(16):14001-14014. [35] KIK P G,MAIER S A,ATWATER H A,et al.. Image resolution of surface plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources[J]. Phys. Rev. B,2004,69(4):045418-045422.
  • 加载中
计量
  • 文章访问数:  8990
  • HTML全文浏览量:  837
  • PDF下载量:  8530
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-17
  • 修回日期:  2010-07-23
  • 刊出日期:  2010-10-25

目录

    /

    返回文章
    返回