留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对史密斯-帕塞尔自由电子激光光栅的研究

孟现柱

孟现柱. 对史密斯-帕塞尔自由电子激光光栅的研究[J]. 中国光学(中英文), 2020, 13(2): 381-395. doi: 10.3788/CO.20201302.0381
引用本文: 孟现柱. 对史密斯-帕塞尔自由电子激光光栅的研究[J]. 中国光学(中英文), 2020, 13(2): 381-395. doi: 10.3788/CO.20201302.0381
MENG Xian-zhu. Study on grating of Smith-Purcell free-electron laser[J]. Chinese Optics, 2020, 13(2): 381-395. doi: 10.3788/CO.20201302.0381
Citation: MENG Xian-zhu. Study on grating of Smith-Purcell free-electron laser[J]. Chinese Optics, 2020, 13(2): 381-395. doi: 10.3788/CO.20201302.0381

对史密斯-帕塞尔自由电子激光光栅的研究

doi: 10.3788/CO.20201302.0381
基金项目: 

国家自然科学基金资助项目 11275089

国家自然科学基金资助项目 11375081

详细信息
    作者简介:

    孟现柱(1968—),男,山东平邑人,教授,硕士生导师,1991年于聊城师范学院获得学士学位,2002年于山东师范大学获得硕士学位,现为聊城大学教授,主要从自由电子激光的研究。E-mail: mengxz@lcu.edu.cn

  • 中图分类号: O463

Study on grating of Smith-Purcell free-electron laser

Funds: 

National Natural Science Foundation of China (NSFC) 11275089

National Natural Science Foundation of China (NSFC) 11375081

More Information
    Author Bio:

    MENG Xian-zhu(1968—), male, born in Pingyi County, Shandong Province.Professor, master supervisor.He graduated from Liaocheng Teacher's University in 1991 and obtained his master's degree from Shandong Normal University in 2002.Now he is a professor of Liaocheng University and is mainly engaged in the research of free electron laser.E-mail:mengxz@lcu.edu.cn

    Corresponding author: MENG Xian-zhu, E-mail:mengxz@lcu.edu.cn
  • 摘要: 为了研究史密斯-帕塞尔自由电子激光的输出频率和光栅槽深、光栅槽长、光栅槽宽的关系,对于基于矩形光栅的史密斯-帕塞尔自由电子激光利用粒子模拟软件进行模拟和理论分析。首先,利用粒子模拟软件模拟对于基于矩形光栅的史密斯-帕塞尔自由电子激光进行了研究,发现史密斯-帕塞尔自由电子激光的输出频率随光栅槽深、光栅槽长、光栅槽宽的增大而减少。接着,对史密斯-帕塞尔自由电子激光的光栅槽进行了理论分析,发现每个光栅槽都可以等效为一个LC谐振电路,并发现在史密斯-帕塞尔自由电子激光中存在两种辐射,一种是史密斯-帕塞尔辐射,另一种是LC振荡辐射。最后,对光栅槽的LC振荡辐射进行了估算,发现史密斯-帕塞尔自由电子激光输出频率的模拟值与光栅槽的LC振荡辐射估算值的数量级均为102 GHz,且变化规律上一致。据此推测决定史密斯-帕塞尔自由电子激光输出频率的应该是光栅槽,而不是谐振腔。

     

  • 图 1  基于矩形光栅的SP FEL的原理图

    Figure 1.  Schematic diagram of the SP FEL based on rectangular grating

    图 2  基于矩形光栅的SP FEL的模拟图

    Figure 2.  Simulation graph of the SP FEL based on rectangular grating

    图 3  在不同光栅槽深时SP FEL中电子注的动能沿z轴分布图

    Figure 3.  Kinetic energy of beams in bunching state of SP FEL at different slot depths of grating

    图 4  在不同光栅槽深时SP FEL的频谱分布图

    Figure 4.  Frequency spectra of the SP FEL at different depths of grating groove

    表  1  基于矩形光栅的SP FEL的谐振腔参数和电子束参数

    Table  1.   Resonator parameters and electron beam parameters of the SP FEL based on rectangular grating

    Parameters Value Parameters Value
    Width of resonator/mm 1.5 Transverse size of beam/mm 0.5
    Length of resonator/mm 36.9 Beam voltage/kV 50
    Height of resonator/mm 0.75 Current/A 10
    下载: 导出CSV

    表  2  在不同光栅槽深时SP FEL输出频率的模拟值

    Table  2.   Simulation values of output frequency of SP FEL at different depths of grating groove

    Parameters Values
    Number of periods 32
    Period length of grating/mm 0.3
    Slot length of grating/mm 1.5
    Slot width of grating/mm 0.1
    Slot depth of grating/mm 0.15 0.2 0.25 0.3 0.35 0.4
    Simulation value of output frequency / GHz 723.379 529.786 483.632 436.827 400.121 370.060
    下载: 导出CSV

    表  3  在不同光栅槽长时SP FEL输出频率的模拟值

    Table  3.   Simulation values of output frequency of SP FEL at different lengths of grating groove

    Parameters Values
    Number of periods 32
    Period length of grating/mm 0.3
    Slot width of grating/mm 0.1
    Slot depth of grating/mm 0.2
    Slot length of grating/mm 0.75 1.5
    Simulation value of output frequency/GHz 727.255 529.786
    下载: 导出CSV

    表  4  在不同光栅槽宽时SP FEL输出频率的模拟值

    Table  4.   Simulation values of output frequency of SP FEL at different widths of grating groove

    Parameters Values
    Number of periods 32
    Period length of grating/mm 0.3
    Slot length of grating/mm 1.5
    Slot depth of grating/mm 0.2
    Slot width of grating/mm 0.1 0.15 0.2
    Simulation value of output frequency / GHz 529.786 515.823 508.692
    下载: 导出CSV

    表  5  不同光栅槽深时光栅槽的LCR估算值

    Table  5.   Estimation values of LCR of grating groove at different groove depths

    Slot depth of grating/mm Estimation value of LCR/GHz
    0.15 302.849
    0.2 224.843
    0.25 178.800
    0.3 148.412
    0.35 126.854
    0.4 110.765
    下载: 导出CSV

    表  6  不同光栅槽长时光栅槽的LCR估算值

    Table  6.   Estimation values of LCR of grating groove at different groove lengths

    Slot length of grating/mm Estimation value of LCR/GHz
    0.75 317.976
    1.5 224.843
    下载: 导出CSV

    表  7  不同光栅槽宽时光栅槽的LCR估算值

    Table  7.   Estimation values of LCR of grating groove at different groove widths

    Slot width of grating/mm Estimation value of LCR/GHz
    0.1 224.843
    0.15 150.806
    0.2 137.482
    下载: 导出CSV
  • [1] SMITH S J, PURCELL E M. Visible light from localized surface charges moving across a grating[J]. Physical Review, 1953, 92(4):1069. http://cn.bing.com/academic/profile?id=bb7bebc0a23091065c994d7cd063b8df&encoded=0&v=paper_preview&mkt=zh-cn
    [2] GREEN B, KOVALEV S, ASGEKAR V, et al.. High-field high-repetition-rate sources for the coherent THz control of matter[J]. Scientific Reports, 2016, 6:22256. doi: 10.1038/srep22256
    [3] MENG X ZH, WANG M H, ZHANG L M, et al.. Characteristic analysis of a Smith-Purcell terahertz source[J]. Photonics Research, 2016, 4(5):162-167. doi: 10.1364/PRJ.4.000162
    [4] 孟现柱, 王明红, 孙桂芳, 等.基于微型谐振腔的史密斯-帕赛尔自由电子激光[J].聊城大学学报(自然科学版), 2018, 31(4):48-51. http://d.old.wanfangdata.com.cn/Periodical/lcsyxb-zrkxb201804009

    MENG X ZH, WANG M H, SUN G F, et al.. Smith-Purcell free electron laser based on micro-resonator[J]. Journal of Liaocheng University (Natural Science Edition), 2018, 31(4):48-51. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lcsyxb-zrkxb201804009
    [5] 孟现柱, 王明红, 张黎明, 等.基于史密斯——帕赛尔效应的太赫兹振荡器的原理与特性分析[J].光子学报, 2016, 45(4):0423003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201604003

    MENG X ZH, WANG M H, ZHANG L M, et al.. Principle and characteristics analysis of a terahertz oscillator based on Smith-Purcell effect[J]. Acta Photonica Sinica, 2016, 45(4):0423003. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201604003
    [6] LIU W H, LU Y L, WANG L, et al.. A multimode terahertz-Orotron with the special Smith-Purcell radiation[J]. Applied Physics Letters, 2016, 108(18):183510. doi: 10.1063/1.4949015
    [7] LI D, IMASAKI K, YANG Z. Three-dimensional simulation of super-radiant Smith-Purcell radiation[J]. Applied Physics Letters, 2006, 88(20):201501. doi: 10.1063/1.2204750
    [8] ZHOU Y C, ZHANG Y X, LIU SH G. Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2):262-267. doi: 10.1109/TTHZ.2016.2516524
    [9] 史宗君, 唐效频, 兰峰, 等.太赫兹频段一维介质光子晶体中的史密斯-帕塞尔辐射特性模拟[J].红外与毫米波学报, 2014, 33(2):183-187. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201402013

    SHI Z J, TANG X P, LAN F, et al.. Simulation of terahertz Smith-Purcell radiation from one-dimensional dielectric photonic crystal[J]. Journal of Infrared and Millimeter Waves, 2014, 33(2):183-187. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201402013
    [10] LI W W, XU Y F, LU Y L, et al.. Enhancement of coherent THz Smith-Purcell radiation by resonance overlapping[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(1):12-21. doi: 10.1007/s10762-016-0304-7
    [11] KUMAR P, BHASIN L, TRIPATHI V K, et al.. Smith-Purcell terahertz radiation from laser modulated electron beam over a metallic grating[J]. Physics of Plasmas, 2016, 23(9):093301. doi: 10.1063/1.4963004
    [12] ZHANG P, ANG L K, GOVER A. Enhancement of coherent Smith-Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(2):020702. doi: 10.1103/PhysRevSTAB.18.020702
    [13] ZHANG P, ZHANG Y, TANG M. Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array[J]. Optics Express, 2017, 25(10):10901-10910. doi: 10.1364/OE.25.010901
    [14] 刘维浩, 陆亚林, 贾启卡.一种基于特异Smith-Purcell效应的太赫兹辐射源: 中国, CN201610220733.5[P]. 2016-08-03.

    LIU W H, LU Y L, JIA Q K. Terahertz radiation source based on special Smith-Purcell effect: CN, CN201610220733.5[P]. 2016-08-03. (in Chinese)
    [15] 刘维浩, 梁林波, 陆亚林, 等.基于两段矩形光栅的史密斯-帕赛尔电磁辐射源: 中国, CN201710347815.0[P]. 2017-05-07.

    LIU W H, LIANG L B, LU Y L, et al.. Smith passail electromagnetic radiation source based on two rectangular grating: CN, CN201710347815.0[P]. 2017-05-07. (in Chinese)
    [16] LIANG L B, LIU W H, JIA Q K, et al.. High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings[J]. Optics Express, 2017, 25(3):2960-2968. doi: 10.1364/OE.25.002960
    [17] LIU W X, TANG CH X, HUANG W H. Characteristics of terahertz coherent transition radiation generated from picosecond ultrashort electron bunches[J]. Chinese Physics B, 2010, 19(6):062902. doi: 10.1088/1674-1056/19/6/062902
    [18] CHEN J Y, ZHENG L, ZHANG Y CH, et al.. A novel Smith-Purcell free electron laser[J]. International Journal of Electronics, 2011, 88(4):467-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00207210010013238
    [19] KUMAR P, BHASIN L, TRIPATHI V K, et al.. Smith-Purcell terahertz radiation from laser modulated electron beam over a metallic grating[J]. Physics of Plasmas, 2016, 23(9):093301. doi: 10.1063/1.4963004
    [20] ZHANG Y X, DONG L. Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams[J]. Optics Express, 2012, 20(20):22627-22635. doi: 10.1364/OE.20.022627
    [21] BEI H, DAI D D, DAI ZH M. Simulation of Smith-Purcell radiation from compact terahertz source[J]. High Power Laser and Particle Beams, 2008, 20(12):2067-2072. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200812027
    [22] GAO X, YANG Z Q, QI L M, et al.. Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures[J]. Chinese Physics B, 2009, 18(6):2452-2458. doi: 10.1088/1674-1056/18/6/055
    [23] 席阳红, 谢国大, 徐辉, 等.时变磁化等离子体的LTJEC-FDTD方法研究[J].发光学报, 2018, 39(7):1029-1035. http://d.old.wanfangdata.com.cn/Periodical/fgxb201807021

    XI Y H, XIE G D, XU H, et al.. Analysis of time-varying magnetic plasma by using LTJEC-FDTD method[J]. Chinese Journal of Luminescence, 2018, 39(7):1029-1035. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201807021
    [24] 李传起, 范庆斌, 陆叶, 等.多信道异质结构光子晶体滤波器[J].光学 精密工程, 2015, 23(8):2171-2177. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201508008

    LI CH Q, FAN Q B, LU Y, et al.. Multi-channel heterophotonic crystal filter[J]. Opt. Precision Eng., 2015, 23(8):2171-2177. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201508008
    [25] 杨波, 梁静秋, 梁中翥, 等.液晶-金属光子晶体波导的光学特性[J].发光学报, 2011, 32(11):1159-1164. http://d.old.wanfangdata.com.cn/Periodical/fgxb201111013

    YANG B, LIANG J Q, LIANG ZH ZH, et al.. The optical properties of a liquid crystal-metal photonic crystal waveguide[J]. Chinese Journal of Luminescence, 2011, 32(11):1159-1164. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201111013
    [26] 刘杰, 铁生年, 卢辉东.多信道二维光子晶体滤波器[J].光学 精密工程, 2016, 24(5):1021-1027. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201605009

    LIU J, TIE SH N, LU H D. Multi-channel drop filter based on two-dimensional photonic crystal[J]. Opt. Precision Eng., 2016, 24(5):1021-1027. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201605009
    [27] MENG X ZH. Smith-Purcell free electron laser based on a semi-conical resonator[J]. Optics Communications, 2012, 285(6):975-979. doi: 10.1016/j.optcom.2011.11.100
    [28] MENG X ZH. Smith-Purcell free electron laser based on a multilayer metal-dielectric stack[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(17):3162-3164. doi: 10.1016/j.ijleo.2012.09.001
    [29] MENG X ZH, WANG M H, REN ZH M. Smith-Purcell free electron laser based on the semi-elliptical resonator[J]. Chinese Physics B, 2011, 20(5):050702. doi: 10.1088/1674-1056/20/5/050702
    [30] MENG X ZH, WANG M H, REN ZH M. Smith-Purcell radiation in a grating-resonator composite structure[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb201601005
    [31] 王雪飞, 卢振武, 王泰升, 等.超表面上表面等离激元波的光栅衍射行为研究[J].中国光学, 2018, 11(1):60-73. doi: 10.3788/CO.20181101.0060

    WANG X F, LU ZH W, WANG T SH, et al.. Grating diffractive behavior of surface Plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1):60-73. (in Chinese) doi: 10.3788/CO.20181101.0060
    [32] 刘镜, 刘娟, 王涌天, 等.亚波长金属光栅的表面等离子体激元共振特性[J].中国光学, 2011, 4(4):363-368. doi: 10.3969/j.issn.2095-1531.2011.04.007

    LIU J, LIU J, WANG Y T, et al.. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics, 2011, 4(4):363-368. (in Chinese) doi: 10.3969/j.issn.2095-1531.2011.04.007
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  1492
  • HTML全文浏览量:  929
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-04-30
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!