留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶丸内表面轮廓的白光共焦光谱测量技术

唐兴 王琦 马小军 高党忠 王宗伟 孟婕

唐兴, 王琦, 马小军, 高党忠, 王宗伟, 孟婕. 靶丸内表面轮廓的白光共焦光谱测量技术[J]. 中国光学(中英文), 2020, 13(2): 266-272. doi: 10.3788/CO.20201302.0266
引用本文: 唐兴, 王琦, 马小军, 高党忠, 王宗伟, 孟婕. 靶丸内表面轮廓的白光共焦光谱测量技术[J]. 中国光学(中英文), 2020, 13(2): 266-272. doi: 10.3788/CO.20201302.0266
TANG Xing, WANG Qi, MA Xiao-jun, GAO Dang-zhong, WANG Zong-wei, MENG Jie. Determination of the inner-surface profile of a capsule using chromatic confocal spectroscopy[J]. Chinese Optics, 2020, 13(2): 266-272. doi: 10.3788/CO.20201302.0266
Citation: TANG Xing, WANG Qi, MA Xiao-jun, GAO Dang-zhong, WANG Zong-wei, MENG Jie. Determination of the inner-surface profile of a capsule using chromatic confocal spectroscopy[J]. Chinese Optics, 2020, 13(2): 266-272. doi: 10.3788/CO.20201302.0266

靶丸内表面轮廓的白光共焦光谱测量技术

doi: 10.3788/CO.20201302.0266
基金项目: 

科学挑战计划 TZ2018006-0204-01

详细信息
    作者简介:

    唐兴(1980-), 男, 四川绵阳人, 学士, 助理研究员, 2004年于四川大学获得学士学位, 主要从事激光聚变靶参数测量技术研究。E-mail:4606794@qq.com

    马小军(1979-), 男, 四川南部人, 博士, 副研究员, 2003年于西安电子科技大学获得学士学位, 2013年于同济大学获得硕士学位, 2017年于复旦大学获得博士学位, 主要从事激光聚变靶参数测量技术研究。E-mail:maxj802@163.com

  • 中图分类号: O433.1

Determination of the inner-surface profile of a capsule using chromatic confocal spectroscopy

Funds: 

Science Challenge Program TZ2018006-0204-01

More Information
  • 摘要: 靶丸内表面轮廓是激光核聚变靶丸的关键参数,需要精密检测。本文首先分析了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量基本原理,建立了靶丸内表面轮廓的白光共焦光谱测量方法。此外,搭建了靶丸内表面轮廓测量实验装置,建立了基于靶丸光学图像的辅助调心方法,实现了靶丸内表面轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线;最后,对测量结果的可靠性进行了实验验证和不确定度分析,结果表明,白光共焦光谱能实现靶丸内表面低阶轮廓的精密测量,其测量不确定度优于0.1 μm。

     

  • 图 1  (a) 白光共焦光谱传感器的工作原理示意图和(b)透明样品下表面轮廓的测量原理

    Figure 1.  (a)Schematic of working principle of chromatic confocal spectroscopy and (b)measurement principle of the lower surface profile of capsule

    图 2  白光共焦光谱轮廓检测系统

    Figure 2.  Surface profile measurement system based on chromatic confocal spectrum

    图 3  靶丸旋转调心原理图

    Figure 3.  Principle diagram of adjusting rotation center of capsule

    图 4  靶丸内外表面轮廓的白光共焦光谱测量曲线

    Figure 4.  Chromatic confocal spectrum profile curves of the capsule inner and outer surfaces

    图 5  靶丸外表面轮廓(a)及其功率谱曲线(b)

    Figure 5.  Outer surface profile curves (a) and power spectra (b) of capsule

    图 6  正弦调制样品向上时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

    Figure 6.  The upper surface profile(a) and lower surface profiles before and after calibration (b)when the sinusoidal modulation structure is placed upward

    图 7  正弦调制样品向下时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

    Figure 7.  The upper surface profile (a) and lower surface profiles before and after calibration (b) when the sinusoidal modulation structure is placed downward

    表  1  测量不确定度分量表

    Table  1.   Components of measurement uncertainty

    不确定度分量 不确定度来源 不确定度大小/nm
    u1 直接测量误差 39
    u2 轴系的回转误差 44
    u3 重复性测量误差 41
    u4 校准模型误差 52
    下载: 导出CSV
  • [1] LINDL J D, AMENDT P, BERGER R L, et al.. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2):339-491. doi: 10.1063/1.1578638
    [2] HAAN S W, LINDL J D, CALLAHAN D A, et al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18(5):051001. doi: 10.1063/1.3592169
    [3] MCEACHERN R L, MOORE C E, WALLACE R J. The design, performance, and application of an atomic force microscope-based profilometer[J]. Journal of Vacuum Science & Technology A, 1995, 13(3):983-989. doi: 10.1116-1.579662/
    [4] STEPHENS R B, OLSON D, HUANG H, et al.. Complete surface mapping of ICF shells[J]. Fusion Science and Technology, 2004, 45(2):210-213. doi: 10.13182/FST45-210
    [5] 赵学森, 孙涛, 马小军, 等.基于AFM的靶丸表面轮廓仪设计及其测量精度分析[J].纳米技术与精密工程, 2006, 4(4):307-310. doi: 10.3969/j.issn.1672-6030.2006.04.012

    ZHAO X S, SUN T, MA X J, et al.. Design of target profilometer based on AFM and its measure precision analysis[J]. Nanotechnology and Precision Engineering, 2006, 4(4):307-310. (in Chinese) doi: 10.3969/j.issn.1672-6030.2006.04.012
    [6] 赵学森, 高党忠, 马小军, 等.立式靶丸AFM表面轮廓仪系统精度测试[J].原子能科学技术, 2012, 46(8):1014-1018. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201208024

    ZHAO X S, GAO D ZH, MA X J, et al.. Measure precision analysis of capsule vertical-AFM surface profiler system[J]. Atomic Energy Science and Technology, 2012, 46(8):1014-1018. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201208024
    [7] HUANG H, KOZIOZIEMSKI B J, STEPHENS R B, et al.. Quantitative radiography:Submicron dimension calibration for ICF ablator shell characterization[J]. Fusion Science and Technology, 2007, 51(4):519-524. doi: 10.13182/FST07-3
    [8] DONG B, ZHANG Y, ZHANG W C, et al.. Highly sensitive, wide dynamic range displacement sensor combining chromatic confocal system and phase-sensitive spectral optical coherence tomography[J]. Optics Express, 2017, 25(5):5426-5430. doi: 10.1364/OE.25.005426
    [9] BOETTCHER T, GRONLE M, OSTEN W. Multi-layer topography measurement using a new hybrid single-shot technique:Chromatic Confocal Coherence Tomography (CCCT)[J]. Optics Express, 2017, 25(9):10204-10213. doi: 10.1364/OE.25.010204
    [10] SEPPÄ J, NIEMELÄ K, LASSILA A. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors[J]. Measurement Science and Technology, 2018, 29(5):054008. doi: 10.1088/1361-6501/aaad2b
    [11] ZOU X C, ZHAO X S, LI G, et al.. Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8):2163-2172. doi: 10.1007/s00170-016-9494-3
    [12] 刘志群, 易定容, 孔令华, 等.基于并行共聚焦显微系统的物方差动轴向测量[J].光学 精密工程, 2017, 25(6):1449-1457. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706007

    LIU ZH Q, YI D R, KONG L H, et al.. Object-side based differential axial measurement based on parallel confocal microscopy[J]. Opt. Precision Eng., 2017, 25(6):1449-1457. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706007
    [13] 戴岑, 巩岩, 张昊, 等.微分干涉差共焦显微膜层微结构缺陷探测系统[J].中国光学, 2018, 11(2):255-264. doi: 10.3788/CO.20181102.0255

    DAI C, GONG Y, ZHANG H, et al.. Detection system of multilayer coating microstructure defects based on differential interference contrast confocal microscopy[J]. Chinese Optics, 2018, 11(2):255-264. (in Chinese) doi: 10.3788/CO.20181102.0255
    [14] KUNKEL M, SCHULZE J. Noncontact measurement of central lens thickness[J]. Glass Science and Technology, 2005, 78(5):245-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b172689671d297ad58601608ff1a6d3e
    [15] 马小军, 高党忠, 杨蒙生, 等.应用白光共焦光谱测量金属薄膜厚度[J].光学 精密工程, 2011, 19(1):17-22. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201101003

    MA X J, GAO D ZH, YANG M SH, et al.. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Opt. Precision Eng., 2011, 19(1):17-22. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201101003
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1472
  • HTML全文浏览量:  809
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 修回日期:  2019-05-22
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!