留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机发光二极管显示屏的喷墨打印研究与展望

刘欣 叶芸 唐谦 郭太良

刘欣, 叶芸, 唐谦, 郭太良. 有机发光二极管显示屏的喷墨打印研究与展望[J]. 中国光学, 2020, 13(2): 217-228. doi: 10.3788/CO.20201302.0217
引用本文: 刘欣, 叶芸, 唐谦, 郭太良. 有机发光二极管显示屏的喷墨打印研究与展望[J]. 中国光学, 2020, 13(2): 217-228. doi: 10.3788/CO.20201302.0217
LIU Xin, YE Yun, TANG Qian, GUO Tai-liang. Progress of OLEDs prepared by inkjet printing[J]. Chinese Optics, 2020, 13(2): 217-228. doi: 10.3788/CO.20201302.0217
Citation: LIU Xin, YE Yun, TANG Qian, GUO Tai-liang. Progress of OLEDs prepared by inkjet printing[J]. Chinese Optics, 2020, 13(2): 217-228. doi: 10.3788/CO.20201302.0217

有机发光二极管显示屏的喷墨打印研究与展望

doi: 10.3788/CO.20201302.0217
基金项目: 

国家重点研究发展计划 2017YFB0404604

福建省自然科学基金 2018J01802

详细信息
    作者简介:

    刘欣(1994-), 女, 山东菏泽人, 硕士研究生, 2016年于西北师范大学获得学士学位, 主要从事喷墨打印OLED器件性能的研究。E-mail:876123273@qq.com

    叶芸(1977—),女, 福建福州人,博士,研究员,2007年于电子科技大学获得博士学位,主要从事物理电子学方面的研究。E-mail: yeyun07@fzu.edu.cn

  • 中图分类号: TN141;TN873+.3

Progress of OLEDs prepared by inkjet printing

Funds: 

National Key Research and Development Plan 2017YFB0404604

Natural Science Foundation of Fujian Province 2018J01802

More Information
  • 摘要: 近年来,有机发光二极管(OLED)被广泛应用于智能手机等中小尺寸显示屏,并逐步进入电视等大尺寸显示领域和照明市场。随着OLED平板显示新时代的到来,对显示屏的彩色化与图案化研究提出了更高要求。与传统真空蒸镀技术相比,喷墨打印技术更容易实现大面积器件的彩色化和复合功能材料的图案化,且工艺简单,成本低廉,并可进行柔性器件加工。本文综述了采用喷墨打印技术制备OLED显示屏的研究现状,并系统介绍了喷墨打印设备的发展历程,通过优化bank结构提高显示屏的分辨率,优化墨水配方及组成配比抑制喷墨液滴的"咖啡环"效应,从而提高显示器发光均匀性,最后对国内外该技术产业进行了概述与展望。
  • 图  1  喷墨打印技术的分类

    Figure  1.  Classification of inkjet printing technology

    图  2  按需喷墨打印工作原理图

    Figure  2.  Schematic of inkjet print-on-demand

    图  3  YIELDJet喷墨打印系统

    Figure  3.  YIELDJet inkjet printer

    图  4  Jetlab Ⅱ喷墨打印设备(来源:microfab网站)

    Figure  4.  Jetlab Ⅱ inkjet printer(Source:microfab website)

    图  5  SUREjet-T7680V喷墨打印喷头(来源:sina网站)

    Figure  5.  SUREjet-T7680V inkjet printer nozzle(Source:sina website)

    图  6  OLED显示屏的彩色像素结构

    Figure  6.  Pixel structure of color OLED

    图  7  OLED像素排列方式(来源:PC online网站)

    Figure  7.  Pixel alignments of OLED(Source: PC online website)

    图  8  单个像素侧面结构

    Figure  8.  Cross-section of a single pixel

    图  9  OLED像素结构

    Figure  9.  Pixel structures of OLED

    图  10  JOLED 21.6英寸喷墨打印显示屏

    Figure  10.  JOLED 21.6-inch inkjet-printing screen

    图  11  BOE 55英寸喷墨打印显示屏(来源:IT homel网站)

    Figure  11.  BOE 55-inch inkjet-printing display screen(Soure:IT homel website)

    图  12  CES喷墨打印显示屏(来源:zol网站)

    Figure  12.  Inkjet-printing display screen of CES(Source:zol website)

  • [1] BATOOL F. A review paper on:organic light-emitting diode (OLED) technology and applications[J]. IJARCCE, 2016, 5(11):152-156.
    [2] 李寒东.喷墨印刷将推动OLED显示制造技术快速发展[J].网印工业, 2018(3):24-25. doi: 10.3969/j.issn.1007-2160.2018.03.010

    LI H D. Inkjet printing will promote the rapid development of OLED display manufacturing technology[J]. Screen Printing Industry, 2018(3):24-25. (in Chinese) doi: 10.3969/j.issn.1007-2160.2018.03.010
    [3] 李继军, 聂晓梦, 甄威, 等.显示技术比较及新进展[J].液晶与显示, 2018, 33(1):78-84. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801011

    LI J J, NIE X M, ZHEN W, et al.. New developments and comparisons in display technology[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1):78-84. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801011
    [4] LAN L H, ZOU J H, JIANG C B, et al.. Inkjet printing for electroluminescent devices:emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 2017, 10(4):329-352. doi: 10.1007/s12200-017-0765-x
    [5] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al.. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293):539-541. doi: 10.1038/347539a0
    [6] HEBNER T R, WU C C, MARCY D, et al.. Inkjet printing of doped polymers for organic light emitting devices[J]. Applied Physics Letters, 1998, 72(5):519-521. doi: 10.1063/1.120807
    [7] 林杨鸣, 曲轶, 于新红, 等.喷墨打印聚合物薄膜均匀性调控研究进展[J].应用化学, 2018, 35(2):129-136. http://d.old.wanfangdata.com.cn/Periodical/yyhx201802002

    LIN Y M, QU Y, YU X H, et al.. Research progress on modulation of film thickness uniformity of polymer films by inkjet printing[J]. Chinese Journal of Applied Chemistry, 2018, 35(2):129-136. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yyhx201802002
    [8] DE GANS B J, DUINEVELD P C, SCHUBERT U S. Inkjet printing of polymers:state of the art and future developments[J]. Advanced Materials, 2004, 16(3):203-213. doi: 10.1002/adma.200300385
    [9] 魏玉瑶, 孙子乔, 任昊慧, 等.微液滴生成方法研究进展[J].分析化学, 2019, 47(6):795-804. http://d.old.wanfangdata.com.cn/Periodical/fxhx201906001

    WEI Y Y, SUN Z Q, REN H H, et al.. Advances in microdroplet generation methods[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):795-804. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201906001
    [10] BRÜNAHL J, GRISHIN A M. Piezoelectric shear mode drop-on-demand inkjet actuator[J]. Sensors and Actuators A:Physical, 2002, 101(3):371-382. doi: 10.1016/S0924-4247(02)00212-1
    [11] DE GANS B J, SCHUBERT U S. Inkjet printing of polymer micro-arrays and libraries:instrumentation, requirements, and perspectives[J]. Macromolecular Rapid Communications, 2003, 24(11):659-666. doi: 10.1002/marc.200350010
    [12] CHANG J Q, LIU Y X, HUANG B. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head:experiments and model[J]. Journal of Micromechanics and Microengineering, 2017, 27(7):075023. doi: 10.1088/1361-6439/aa7040
    [13] TEKIN E, SMITH P J, SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4):703-713. doi: 10.1039/b711984d
    [14] ABBEL R, DE VRIES I, LANGEN A, et al.. Toward high volume solution based roll-to-roll processing of OLEDs[J]. Journal of Materials Research, 2017, 32(12):2219-2229. doi: 10.1557/jmr.2017.204
    [15] FRÖBEL M, FRIES F, SCHWAB T, et al.. Three-terminal RGB full-color OLED pixels for ultrahigh density displays[J]. Scientific Reports, 2018, 8(1):9684. doi: 10.1038/s41598-018-27976-z
    [16] DUINEVELD P C, DE KOK M M, BUECHEL M, et al.. Ink-jet printing of polymer light-emitting devices[J]. Proceedings of SPIE, 2002, 4464:59-67. doi: 10.1117/12.457460
    [17] 钟可君, 伏燕军, 江光裕.锥状微结构阵列提高OLED出光效率的研究[J].液晶与显示, 2018, 33(10):823-830. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810001

    ZHONG K J, FU Y J, JIANG G Y. Improvement of OLED luminous efficiency by cone-shaped microstructure array[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10):823-830. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810001
    [18] FUNAMOTO T, MATSUEDA Y, YOKOYAMA O, et al.. 27.5:Late news paper:a 130-ppi, full-color polymer OLED display fabricated using an ink-jet process[J]. SID Symposium Digest of Technical Papers, 2012, 33(1):899-901. http://d.old.wanfangdata.com.cn/Periodical/gydq200803007
    [19] ZHANG W F, LI N, KOGA D, et al.. Inkjet printing based droplet generation for integrated online digital polymerase chain reaction[J]. Analytical Chemistry, 2018, 90(8):5329-5334. doi: 10.1021/acs.analchem.8b00463
    [20] WANG J H, SONG CH, ZHONG ZH M, et al.. In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display[J]. Journal of Materials Chemistry C, 2017, 5(20):5005-5009. doi: 10.1039/C7TC01330B
    [21] 刘南柳.湿法制备有机半导体器件及其应用研究[D].广州: 华南理工大学, 2009.

    LIU N L. Preparation and application of organic semiconductor devices by wet method[D]. Guangzhoua: South China University of Technology, 2009. (in Chinese)
    [22] 焦志强, 黄清雨, 张娟, 等. OLED材料与器件研究进展[J].新材料产业, 2018(2):25-29. http://d.old.wanfangdata.com.cn/Periodical/hgxxcl201205004

    JIAO ZH Q, HUANG Q Y, ZHANG J, et al.. OLED advances in materials and devices[J]. Advanced Materials Industry, 2018(2):25-29. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hgxxcl201205004
    [23] GENSLER M, BOEFFEL C, KRÖPKE S, et al.. 82-5:late-news paper:high-resolution printing for future processing of RGB OLED displays[J]. SID Symposium Digest of Technical Papers, 2018, 49(1):1117-1119. doi: 10.1002/sdtp.12115
    [24] KIM S S, KIM H S, LEE J G, et al.. 64-1:Invited paper:ultra-high precision inkjet printing technology for display[J]. SID Symposium Digest of Technical Papers, 2018, 49(1):839-842. doi: 10.1002/sdtp.12244
    [25] MU L, HU ZH H, ZHONG ZH M, et al.. Inkjet-printing line film with varied droplet-spacing[J]. Organic Electronics, 2017, 51:308-313. doi: 10.1016/j.orgel.2017.08.012
    [26] KANT P, HAZEL A L, DOWLING M, et al.. Sequential deposition of microdroplets on patterned surfaces[J]. Soft Matter, 2018, 14(43):8709-8716. doi: 10.1039/C8SM01373J
    [27] FROMM J E. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM Journal of Research and Development, 1984, 28(3):322-333. doi: 10.1147/rd.283.0322
    [28] JANG D, KIM D, MOON J. Influence of fluid physical properties on ink-jet printability[J]. Langmuir, 2009, 25(5):2629-2635. doi: 10.1021/la900059m
    [29] SINGH A, MANDAL S, SINGH V, et al.. Inkjet printed PEDOT:PSS for organic devices[J]. Proceedings of SPIE, 2012, 8549:854936. doi: 10.1117/12.928190
    [30] TORRISI F, HASAN T, WU W P, et al.. Inkjet-printed graphene electronics[J]. ACS Nano, 2012, 6(4):2992-3006. doi: 10.1021/nn2044609
    [31] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions:experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2):151-173. doi: 10.1016/0301-9322(94)00069-V
    [32] SCHIAFFINO S, SONIN A A. Molten droplet deposition and solidification at low weber numbers[J]. Physics of Fluids, 1997, 9(11):3172-3187. doi: 10.1063/1.869434
    [33] DEEGAN R D, BAKAJIN O, DUPONT T F, et al.. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653):827-829. doi: 10.1038/39827
    [34] XIA S A, CHEON K O, BROOKS J J, et al.. 22.2:printable phosphorescent organic light emitting devices[J]. SID Symposium Digest of Technical Papers, 2008, 39(1):295-298. doi: 10.1889/1.3069650
    [35] WANG D D, WU ZH X, ZHANG X W, et al.. Solution-processed organic films of multiple small-molecules and white light-emitting diodes[J]. Organic Electronics, 2010, 11(4):641-648. doi: 10.1016/j.orgel.2010.01.004
    [36] LIU H M, WEI X, TAN W Y, et al.. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer[J]. Journal of Colloid and Interface Science, 2016, 465:106-111. doi: 10.1016/j.jcis.2015.11.067
    [37] GORTER H, COENEN M J J, SLAATS M W L, et al.. Toward inkjet printing of small molecule organic light emitting diodes[J]. Thin Solid Films, 2013, 532:11-15. doi: 10.1016/j.tsf.2013.01.041
    [38] FAN ZH Q, CHENG CH H, YU SH K, et al.. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine[J]. Optical Materials, 2009, 31(6):889-894. doi: 10.1016/j.optmat.2008.10.023
    [39] DING Z CH, XING R B, FU Q, et al.. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing[J]. Organic Electronics, 2011, 12(4):703-709. doi: 10.1016/j.orgel.2011.01.027
    [40] TEICHLER A, PERELAER J, SCHUBERT U S. Inkjet printing of organic electronics-comparison of deposition techniques and state-of-the-art developments[J]. Journal of Materials Chemistry C, 2013, 1(10):1910-1925. doi: 10.1039/c2tc00255h
    [41] 彭俊彪.喷墨打印薄膜及其发光显示[J].光学与光电技术, 2018, 16(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201804001

    PENG J B. Ink jet printing film and its display[J]. Optics & Optoelectronic Technology, 2018, 16(4):1-7. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201804001
    [42] JHULKI S, MOORTHY J N. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs):structural diversity and classification[J]. Journal of Materials Chemistry C, 2018, 6(31):8280-8325. doi: 10.1039/C8TC01300D
    [43] SINGH M, HAVERINEN H M, DHAGAT P, et al.. Inkjet printing-process and its applications[J]. Advanced Materials, 2010, 22(6):673-685. doi: 10.1002/adma.200901141
    [44] XIE L M, ZHUANG J Y, CHEN X L, et al.. 0.7% Roll-off for solution-processed blue phosphorescent OLEDs with a novel electron transport material[J]. ACS Photonics, 2017, 4(3):449-453.
    [45] XING ZH H, ZHUANG J Y, WEI CH T, et al.. Inkjet-printed quantum dot light-emitting diodes with an air-stable hole transport material[J]. ACS Applied Materials & Interfaces, 2017, 9(19):16351-16359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6acd54d654761da71f6bc0a9e66a80e8
    [46] OLIVIER S, ISHOW E, DELLA-GATTA S M, et al.. Inkjet deposition of a hole-transporting small molecule to realize a hybrid solution-evaporation green top-emitting OLED[J]. Organic Electronics, 2017, 49:24-32. doi: 10.1016/j.orgel.2017.06.017
    [47] SUN J ZH, KANG M X, SONG Y L, et al.. Control and application of "coffee ring" effect in inkjet printing[J]. Progress in Chemistry, 2015, 27(8):979-985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201508001
    [48] LI Y N, YANG Q, LI M ZH, et al.. Rate-dependent interface capture beyond the coffee-ring effect[J]. Scientific Reports, 2016, 6(1):24628. doi: 10.1038/srep24628
    [49] CRIVOI A, DUAN F. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets[J]. Scientific Reports, 2014, 4(1):4310.
    [50] WU L, DONG ZH CH, KUANG M X, et al.. Printing patterned fine 3D structures by manipulating the three phase contact line[J]. Advanced Functional Materials, 2015, 25(15):2237-2242. doi: 10.1002/adfm.201404559
    [51] SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir, 2008, 24(5):2224-2231. doi: 10.1021/la7026847
    [52] XING R B, YE T L, DING Y, et al.. Thickness uniformity adjustment of inkjet printed light-emitting polymer films by solvent mixture[J]. Chinese Journal of Chemistry, 2013, 31(11):1449-1454. doi: 10.1002/cjoc.201300507
    [53] WEI X, CHEN J, GUAN M, et al.. Application of covalent organic frameworks in chromatographic separation, optical sensing and sample pretreatment[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11):1872-2040. http://d.old.wanfangdata.com.cn/Periodical/fxhx201911002
    [54] ZHANG D Y, CAI Y, SHEN Y, et al.. A solid electrode for detection of silver ion based on copper-based metal-organic frameworks doped by multi-walled carbon nanotubes[J]. Chinese Journal of Analytical Chemistry, 2018, 46(11):1794-1801. http://d.old.wanfangdata.com.cn/Periodical/fxhx201811016
    [55] KWAN H C, JUN H Y, KYUNG T K, et al.. Fabrication of auxiliary electrodes using Ag inkjet printing for OLED lighting[J]. SID Symposium Digest of Technical Papers, 2018, 49(1):843-846. doi: 10.1002/sdtp.12252
    [56] TAO Y, LI J, LI K, et al.. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics[J]. Organic Electronics, 2017, 41:179-185. doi: 10.1016/j.orgel.2016.10.046
  • 加载中
图(12)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  851
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-06-10
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回