Aberration effect and optimization design of super-resolution telescope optical system
-
摘要: 针对大口径光学系统中像差影响超分辨效果的问题,开展泽尼克波前像差对望远超分辨成像系统性能和超分辨局部视场影响的研究。设计四区型位相光瞳滤波器,在理想光学系统出瞳处分别加入离焦、像散、彗差和球差像差,逐渐增加幅值,通过分析不同类别和幅度的波前像差下焦面光强分布变化,研究超分辨成像性能和局部视场对不同种类像差的容忍程度。结果表明,离焦可以抑制超分辨旁瓣能量,提高超分辨倍率,但对局部视场影响较大;球差可以抑制超分辨旁瓣能量,增大局部视场;像散和彗差使光斑圆对称性明显下降,其中像散对局部视场的影响较为明显;同时加入适量离焦和球差时,超分辨旁瓣能量下降,超分辨倍率提高,且不影响系统局部视场。据此设计了一个F数为10,焦距为12 m的大口径光学系统,通过合理优化球差和离焦剩余量,实现了超分辨倍率由1.21倍到1.31倍的提升,最大旁瓣峰值由0.33下降到0.30,局部视场为38.28 μm。Abstract: Aiming at the problem of aberration affecting the super-resolution in large-aperture optical systems, the influence of Zernike wavefront aberrations on the performance of telescope super-resolution imaging systems and super-resolution local field of views are studied. A four-zone phase pupil filter is designed. Defocusing, astigmatism, coma and spherical aberrations are added to the exit pupil of an ideal optical system to gradually increase the amplitude. The tolerance of super-resolution imaging performance and local field of views to different types of aberrations are studied by changing the intensity distribution of the focal plane under different kinds and amplitudes of wavefront aberration. The results show that defocusing can inhibit super-resolution sidelobe energy and increase the super-resolution ratio, but has a greater impact on the local field of view; spherical aberration can inhibit super-resolution sidelobe energy and increase the local field of view; astigmatism and coma can significantly reduce the circular symmetry of the spot, and astigmatism has a more significant impact on the local field of view; and when appropriate defocusing and spherical aberration are added, the super-resolution sidelobe energy decreases and the super-resolution ratio is improved without affecting the local field of view.Based on this, a large aperture optical system with F/10 and focal length of 12 m is designed. By optimizing spherical aberration and reasonably defocusing residual, the super-resolution ratio is increased from 1.21 times to 1.31 times, the maximum sidelobe peak value is reduced from 0.33 to 0.30, and the local field of view becomes 38.28 μm.
-
表 1 滤波器参数
Table 1. Filter parameters
Filter parameters r1 r2 r3 phase1 phase2 phase3 phase4 S G L/μm Value 0.231 0.56 0.769 0 3.141 5 0 3.141 5 0.114 1 1.285 7 38 表 2 光学系统加工公差范围
Table 2. Processing tolerance range of optical system
Type Value Fringes(fringe) 1 Surface irregularty(fringe) 0.1 Thickness(mm) 0.01 Surface tilts(arc min) 0.5 Index 0.0005 Abbe 0.1 表 3 光学系统装调公差范围
Table 3. Assembling tolerance range of optical system
Type Value Thickness(mm) 0.01 Element decenters(mm) 0.005 Element tilts(arc min) 0.5 表 4 蒙特卡罗采样计算结果
Table 4. Monte Carlo sampling calculations
Cumulative probability Wavefront(λ) 98% 0.103634697 90% 0.094200097 50% 0.07729033 10% 0.06107939 2% 0.05353193 -
[1] 张景旭.国外地基光电系统空间目标探测的进展[J].中国光学与应用光学, 2009, 2(1):10-16. doi: 10.3969/j.issn.2095-1531.2009.01.002ZHANG J X. Progress in foreign ground-based optoelectronic detecting system for space target detection[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(1):10-16. (in Chinese) doi: 10.3969/j.issn.2095-1531.2009.01.002 [2] 王国强, 陈涛, 王建立.地基空间目标探测与识别技术[J].长春理工大学学报(自然科学版), 2009, 32(2):197-199. doi: 10.3969/j.issn.1672-9870.2009.02.006WANG G Q, CHEN T, WANG J L. The technology of detect and recognize space target using ground-based opt-electronic system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2009, 32(2):197-199. (in Chinese) doi: 10.3969/j.issn.1672-9870.2009.02.006 [3] 田明丽, 薛喜昌.三区位相型三维超分辨光瞳滤波器的优化设计[J].光学技术, 2009, 35(4):591-593. doi: 10.3321/j.issn:1002-1582.2009.04.015TIAN M L, XUE X CH. Optimizing design of 3-zone phase-type 3D superresolution pupil filter[J]. Optical Technique, 2009, 35(4):591-593. (in Chinese) doi: 10.3321/j.issn:1002-1582.2009.04.015 [4] DE JUANA D M, OTI J E, CANALES V F, et al.. Design of Super-resolving continuous phase filters[J]. Optics Letters, 2003, 28(8):607-609. doi: 10.1364/OL.28.000607 [5] CANALES V F, DE JUANA D M, CAGIGAL M P. Super-resolution in compensated telescopes[J]. Optics Letters, 2004, 29(9):935-937. doi: 10.1364/OL.29.000935 [6] OCHOA A N, PÉREZ-SANTOS C. Super-resolution with complex masks using a phase-only LCD[J]. Optics Letters, 2013, 38(24):5389-5392. doi: 10.1364/OL.38.005389 [7] 王超, 张雅琳, 姜会林, 等.超分辨成像方法研究现状与进展[J].激光与红外, 2017, 47(7):789-791. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201707001WANG CH, ZHANG Y L, JIANG H L, et al.. Research status and progress of super resolution imaging methods[J]. Laser & Infrared, 2017, 47(7):789-791. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgyhw201707001 [8] 汤东亮.基于超振荡光场的远场超分辨成像原理和方法研究[D].北京: 中国科学院光电技术研究所, 2016. http://d.old.wanfangdata.com.cn/Thesis/Y3055746TANG D L. Investigation of far-field super-resolution imaging method based on super-oscillatory phenomenon[D]. Beijing: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016. (in Chinese) http://d.old.wanfangdata.com.cn/Thesis/Y3055746 [9] 赵丽娜, 戴云, 赵军磊, 等.基于变形反射镜的光瞳滤波超分辨成像[J].激光与光电子学进展, 2017, 54(4):041801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201704034ZHAO L N, DAI Y, ZHAO J L, et al.. Super-resolution imaging of pupil filter using deformable mirror[J]. Laser & Optoelectronics Progress, 2017, 54(4):041801. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201704034 [10] 刘显著, 王超, 江伦, 等.二维多项式位相光瞳滤波实现超分辨望远成像[J].红外与激光工程, 2018, 47(4):0418007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201804032LIU X ZH, WANG CH, JIANG L, et al.. Super-resolution in telescope imaging system by two-dimensional polynomial phase pupil filter[J]. Infrared and Laser Engineering, 2018, 47(4):0418007. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201804032 [11] BORN M, WOLF E. Principle of Optics[M]. London:Pergamon Press, 1975. [12] MCCUTCHEN C W. Generalized aperture and the three-dimensional diffraction image[J]. Journal of the Optical Society of America, 1964, 54(2):240-242. doi: 10.1364/JOSA.54.000240 [13] 查为懿.超分辨光学系统成像原理与技术[D].北京: 北京理工大学, 2015.ZHA W Y. Imaging principles and technologies of the super-resolving optical system[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese) [14] 陶李, 王珏, 邹永宁, 等.改进的Zernike矩工业CT图像边缘检测[J].中国光学, 2012, 5(1):48-56. doi: 10.3969/j.issn.2095-1531.2012.01.007TAO L, WANG J, ZOU Y N, et al.. Improved Zernike moment method for industrial CT image edge detection[J]. Chinese Optics, 2012, 5(1):48-56. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.01.007 [15] 单宝忠, 王淑岩, 牛憨笨, 等. Zernike多项式拟合方法及应用[J].光学 精密工程, 2002, 10(3):318-323. doi: 10.3321/j.issn:1004-924X.2002.03.020SHAN B ZH, WANG SH Y, NIU H B, et al.. Zernike polynomial fitting method and its application[J]. Opt. Precision Eng., 2002, 10(3):318-323. (in Chinese) doi: 10.3321/j.issn:1004-924X.2002.03.020 [16] 杨佳文, 黄巧林, 韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感, 2010, 31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009YANG J W, HUANG Q L, HAN Y M. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5):49-55. (in Chinese) doi: 10.3969/j.issn.1009-8518.2010.05.009 [17] 刘江, 苗二龙, 王学亮, 等.利用泽尼克位相型光瞳滤波器实现景深延拓及超分辨[J].光学学报, 2015, 35(12):1211002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512019LIU J, MIAO E L, WANG X L, et al.. Depth of field extending and super-resolving with phase pupil filter of Zernike polynomials[J]. Acta Optica Sinica, 2015, 35(12):1211002. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512019 [18] 赵泽宇, 张肇宁, 黄振立.超分辨定位成像中的像差表征和校正[J].光学学报, 2017, 37(3):0318004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703004ZHAO Z Y, ZHANG ZH N, HUANG ZH L. Aberration characterization and correction in super-resolution localization microscopy[J]. Acta Optica Sinica, 2017, 37(3):0318004. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703004 -