留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes

HE Yu-ming YANG Fu-hua YAN Wei LI Zhao-feng

何玉铭, 杨富华, 颜伟, 李兆峰. 谐振式集成光学陀螺系统中用于抑制背散射噪声的相位调制技术[J]. 中国光学(中英文), 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403
引用本文: 何玉铭, 杨富华, 颜伟, 李兆峰. 谐振式集成光学陀螺系统中用于抑制背散射噪声的相位调制技术[J]. 中国光学(中英文), 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403
HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403
Citation: HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403

谐振式集成光学陀螺系统中用于抑制背散射噪声的相位调制技术

基金项目: 

国家重点研发计划 2016YFA02005003

国家自然科学基金 61274066

国家自然科学基金 61504138

国家自然科学基金 61501421

国家自然科学基金 61474115

详细信息
    作者简介:

    何玉铭(1993—), 男, 河南南阳人, 博士研究生, 2015年于兰州大学获得学士学位, 现于中国科学院半导体研究所攻读博士学位, 主要从事谐振式集成光学陀螺方面的研究。E-mail:heyuming@semi.ac.cn

    杨富华(1961—), 男, 山西太原人, 二级研究员, 博士生导师, 1983年、1988年于南开大学及Paul Sabatier大学分别获得理学学士及凝聚态物理专业博士学位, 主要从事微纳结构太阳能电池芯片及集成、宽禁带半导体大功率器件、纳米结构电子器件及集成, MEMS器件方面的研究。E-mail:fhyang@semi.ac.cn

    李兆峰(1976—), 男, 江苏淮安人, 研究员, 硕士生导师, 1998年、2002年于清华大学分别获得学士、博士学位, 主要从事纳米光子学与光电子学方面的研究。E-mail:lizhaofeng@semi.ac.cn

  • 中图分类号: TN629.1;0436.1

Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes

doi: 10.3788/CO.20191206.1403
Funds: 

the National Key Research and Development Program of China 2016YFA02005003

National Natural Science Foundation of China 61274066

National Natural Science Foundation of China 61504138

National Natural Science Foundation of China 61501421

National Natural Science Foundation of China 61474115

More Information
  • 摘要: 在谐振式集成光学陀螺系统中,相位调制技术被广泛用于检测陀螺旋转信号。本文详细介绍了近几年来国内外学者为提高陀螺精度、抑制陀螺噪声所提出的相位调制技术。文章首先从理论上分析了谐振环中的背散射噪声,发现载波抑制是抑制背散射噪声的关键因素。然后,详细介绍了近几年来为提高陀螺精度而提出的两类相位调制技术,分别是单相位调制技术和双相位调制技术,并分析比较了其技术原理、噪声抑制能力以及系统的鲁棒性和复杂度。新型的边带锁定技术可以有效抑制陀螺中的背散射噪声。最后通过总结这些相位调制技术的优缺点发现,在陀螺系统中除了需要借助于相位调制技术抑制背反射噪声外,提高对其他类型噪声的抑制是集成光学陀螺性能进一步提高的关键。

     

  • Figure 1.  (Color online) Resonance curves of signal light and backscattered light when gyroscope is (a)static or (b)in a rotating state

    Figure 2.  (Color online) Sketch map of single-phase modulation technique

    Figure 3.  (Color online) Theoretical signal light intensity after sinusoidal wave modulation when (a)the laser frequency is equal to the resonant frequency and (b)the laser frequency deviates from the resonance frequency

    Figure 4.  (Color online) Theoretical signal light intensity after triangular wave modulation when (a)the laser frequency is equal to the resonant frequency and (b)the laser frequency deviates from the resonance frequency

    Figure 5.  (Color online) Relationship between the phase modulation index deviation from the carrier component zero point and the normalized amplitude of the carrier component. (a)The results of the sine wave SPMT. (b)The results of the triangle wave SPMT[10, 17]

    Figure 6.  (Color online)Sketch map of the RIOG based on (a)the single triangular phase modulation technique[17] and (b)sketch map of the RIOG based on the single sinusoidal phase modulation technique[10]

    Figure 7.  (Color online)(a)Sketch map of the demodulation method of the trapezoidal phase modulation technique[18], (b)intensity modulation output from resonator under trapezoidal phase modulation

    Figure 8.  (Color online) Schematic illustration of a RIOG based on the DSPM technique[21]

    Figure 9.  (Color online)Schematic illustration of a RIOG based on the DTPM[20]

    Figure 10.  (Color online) Schematic illustration of a RIOG based on the phase difference traversal(PDT) method[22]

    Figure 11.  (Color online) Schematic diagram of the closed-loop RIOG based on the hybrid digital phase modulation scheme. (a)The modulation waveforms are sinusoidal and sawtooth waves[23]. (b)The modulation waveforms are triangular waves and sawtooth waves[7]

    Table  1.   RIOGs based on different phase modulation techniques with the best bias stability

    Phase Modulation technique Waveform Resonator finesse Measured short term bias stability (deg/s) Measured long term bias stability (deg/s) System complexity System robustness
    SPMT sinusoidal[10] - 0.46 - low low
    SPMT triangular[17] 56 - 0.717 08 low low
    SPMT trapezoidal[18] 82 - 0.09 low low
    SPMT sideband locking technique[27] 59 - 0.004 2 low high
    DPMT triangular[20] 59 - 0.22 medium high
    DPMT sinusoidal[21] 46.3 0.01 - high high
    DPMT triangular(PDT)[22] 82 0.005 5 0.013 low medium
    DPMT sinusoidal wave and sawtooth-wave[23] 34 - 0.05 high medium
    DPMT triangular wave and sawtooth-wave[7] 59 0.22 - medium medium
    下载: 导出CSV
  • [1] SAGNAC G. L'éther lumineux démontré par léffet du vent relatif d'éther dans un interférométre en rotation uniforme[J]. Comptes Rendus de l'Académie des Sciences, 1913, 157:708-719.
    [2] SUZUKI K, TAKIGUCHI K, HOTATE K. Integrated optical ring-resonator gyro using a silica planar lightwave circuit[J]. Proceedings of SPIE, 1999, 3541:66-75. doi: 10.1117/12.339114
    [3] FEI Y, YANG T SH, LI ZH F, et al.. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. Journal of Semiconductors, 2017, 38(4):044009. doi: 10.1088/1674-4926/38/4/044009
    [4] DELL'OLIO F, TATOLI T, CIMINELLI C, et al.. Recent advances in miniaturized optical gyroscopes[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9:14013. doi: 10.2971/jeos.2014.14013
    [5] SANDERS S J, STRANDJORD L K, MEAD D. Fiber optic gyro technology trends-a Honeywell perspective[C]. Proceedings of 2002 15th Optical Fiber Sensors Conference Technical Digest, IEEE, 2002: 5-8.
    [6] FREIER L, LAZNICKA O, GILMORE J, et al.. A fiber-optic rotation sensor for NASA space missions[J]. AAS Guidance and Control, 1992, 91.
    [7] FENG L SH, LEI M, LIU H L, et al.. Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology[J]. Applied Optics, 2013, 52(8):1668-1675. doi: 10.1364/AO.52.001668
    [8] CIMINELLI C, DELL'OLIO F, ARMENISE M N, et al.. High performance InP ring resonator for new generation monolithically integrated optical gyroscopes[J]. Optics Express, 2013, 21(1):556-564. doi: 10.1364/OE.21.000556
    [9] YU X H, MA H L, JIN ZH H, et al.. Resonator fiber optic gyroscope with an all digitalized system[C]. Proceedings of 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, IEEE, 2010: 815-818.
    [10] IWATSUKI K, HOTATE K, HIGASHIGUCHI M. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro[J]. Applied Optics, 1984, 23(21):3916-3924. doi: 10.1364/AO.23.003916
    [11] MA H L, HE Z Y, HOTATE K. Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression[J]. Proceedings of SPIE, 2009, 7503:750353. doi: 10.1117/12.835029
    [12] SUZUKI K, TAKIGUCHI K, HOTATE K. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J]. Journal of Lightwave Technology, 2000, 18(1):66-72. doi: 10.1109/50.818908
    [13] MA H L, ZHANG X L, JIN ZH H, et al.. Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique[J]. Optical Engineering, 2006, 45(8):080506. doi: 10.1117/1.2280645
    [14] ZHANG X L, MA H L, JIN ZH H, et al.. Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique[J]. Applied Optics, 2006, 45(31):7961-7965. doi: 10.1364/AO.45.007961
    [15] YAN Y CH, WANG L L, MA H L, et al.. Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro[J]. Proceedings of SPIE, 2015, 9655:96550I. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215031297
    [16] YING D Q, MA H L, JIN ZH H. Resonator fiber optic gyro using the triangle wave phase modulation technique[J]. Optics Communications, 2008, 281(4):580-586. doi: 10.1016/j.optcom.2007.10.012
    [17] YU H, ZHANG C, FENG L, et al.. Limitation of rotation sensing in IORG by Rayleigh backscattering noise[J]. Europhysics Letters, 2011, 95(6):64001. doi: 10.1209/0295-5075/95/64001
    [18] WANG J J, FENG L SH, TANG Y CH, et al.. Resonator integrated optic gyro employing trapezoidal phase modulation technique[J]. Optics Letters, 2015, 40(2):155-158. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234104520/
    [19] MAO H, MA H L, JIN ZH H, et al.. Resonator micro-optic gyroscope based on the double phase modulation technique[C]. Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications, IEEE, 2010: 1-2.
    [20] ZHI Y ZH, FENG L SH, WANG J J, et al.. Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation[J]. Applied Optics, 2015, 54(1):114. doi: 10.1364/AO.54.000114
    [21] MAO H, MA H L, JIN ZH H. Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique[J]. Optics Express, 2011, 19(5):4632-4643. doi: 10.1364/OE.19.004632
    [22] WANG J J, FENG L SH, WANG Q W, et al.. Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method[J]. Optics Letters, 2016, 41(7):1586-1589. doi: 10.1364/OL.41.001586
    [23] MA H L, ZHANG J J, WANG L L, et al.. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation[J]. Optics Express, 2015, 23(12):15088-15097. doi: 10.1364/OE.23.015088
    [24] JIN ZH H, YU X H, MA H L. Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation[J]. Optics Express, 2013, 21(22):26578-26588. doi: 10.1364/OE.21.026578
    [25] LEFÈVRE H C. The fiber-optic gyroscope:challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6):828-832. doi: 10.1016/j.yofte.2013.08.007
    [26] DELL'OLIO F, INDIVERI F, CIMINELLI C, et al.. Optoelectronic gyroscope based on a high-Q InGaAsP/InP ring resonator: preliminary results of the system test[C]. Proceedings of 2014 16th International Conference on Transparent Optical Networks, IEEE, 2014: 1-4.
    [27] LIU N, NIU Y X, FENG L SH, et al.. Suppression of backscattering induced noise by the sideband locking technique in a resonant fiber optic gyroscope[J]. Chinese Optics Letters, 2018, 16(1):010608. doi: 10.3788/COL201816.010608
    [28] LEFÈVRE H C. The Fiber-optic Gyroscope[M]. London:Artech House, 2014.
    [29] TENCH R, DELAVAUX J M, TZENG L, et al.. Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5μm[J]. Journal of Lightwave Technology, 1987, 5(4):492-501. doi: 10.1109/JLT.1987.1075535
    [30] FEI Y, HE Y M, LI ZH F, et al.. Backreflections in resonant micro-optic gyroscope[J]. Journal of Physics Communications, 2018, 2(9):095010. doi: 10.1088/2399-6528/aad065
    [31] YAN Y CH, CHEN Y, MA H L, et al.. Polarization-fluctuation induced drift in resonator micro optic gyro[C]. Proceedings of 2012 Asia Communications and Photonics Conference, IEEE, 2012: 1-3.
    [32] FEI Y, HE Y M, WANG X D, et al.. Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro[J]. Chinese Physics B, 2018, 27(8):084213. doi: 10.1088/1674-1056/27/8/084213
    [33] LI X H, ZHANG J J, MA H L, et al.. Test and analysis of the optical kerr-effect in resonant micro-optic gyros[J]. IEEE Photonics Journal, 2014, 6(5):6601007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfedeed3687d3cd0d90139057c8c5beb
    [34] MA H L, YAN Y CH, CHEN Y, et al.. Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation[J]. IEEE Photonics Journal, 2012, 4(6):2372-2381. doi: 10.1109/JPHOT.2012.2232908
    [35] MA H L, CHANG X, YANG ZH H, et al.. Full investigation of the backscattering in resonator fiber optic gyro[J]. Optics Communications, 2011, 284(19):4480-4484. doi: 10.1016/j.optcom.2011.06.018
    [36] KAISER T J, CARDARELLI D, WALSH J G. Experimental developments in the RFOG[J]. Proceedings of SPIE, 1991, 1367:121-126. doi: 10.1117/12.24736
    [37] WANG X J, KISHI M, HE Z Y, et al.. Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation[J]. Proceedings of SPIE, 2012, 8351:83513G. doi: 10.1117/12.914427
    [38] MA H L, HE Z Y, HOTATE K Z. Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro[J]. Journal of Lightwave Technology, 2011, 29(1):85-90. doi: 10.1109/JLT.2010.2092751
    [39] LEI M, FENG L SH, ZHI Y ZH. Impact of inflection points on the performance of resonator integrated optic gyro[J]. Optik, 2014, 125(1):508-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa343d2a6490fcd203ab718f2a0c07f5
    [40] WANG J J, FENG L SH, WANG Q W, et al.. Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro[J]. Optics Express, 2016, 24(5):5463-5468. doi: 10.1364/OE.24.005463
    [41] EZEKIEL S, BALSAMO S R. Passive ring resonator laser gyroscope[J]. Applied Physics Letters, 1997, 30(9):478-480. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC027669952/
    [42] LEI M, FENG L SH, ZHI Y ZH. Sensitivity improvement of resonator integrated optic gyroscope by double-electrode phase modulation[J]. Applied Optics, 2013, 52(30):7214-7219. doi: 10.1364/AO.52.007214
    [43] MOELLER R P, BURNS W K. 1.06-μm all-fiber gyroscope with noise subtraction[J]. Optics Letters, 1991, 16(23):1902-1904. doi: 10.1364/OL.16.001902
    [44] 郭丽君, 宁亮, 孔梅, 等.谐振式集成光学陀螺解调特性分析[J].中国光学, 2014, 7(4):651-656. http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml

    GUO L J, NING L, KONG M, et al.. Demodulation characteristics of resonator integrated optical gyro[J]. Chinese Optics, 2014, 7(4):651-656.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml
    [45] JIN ZH H, ZHANG G H, MAO H, et al.. Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor[J]. Optics Communications, 012, 285(5):645-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef431c61e998320eb58cd7e231dd1ea7
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1622
  • HTML全文浏览量:  671
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-02-02
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!