留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究

王宪双 郭帅 徐向君 李昂泽 何雅格 郭伟 刘瑞斌 张纬经 张同来

王宪双, 郭帅, 徐向君, 李昂泽, 何雅格, 郭伟, 刘瑞斌, 张纬经, 张同来. 基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究[J]. 中国光学(中英文), 2019, 12(4): 888-895. doi: 10.3788/CO.20191204.0888
引用本文: 王宪双, 郭帅, 徐向君, 李昂泽, 何雅格, 郭伟, 刘瑞斌, 张纬经, 张同来. 基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究[J]. 中国光学(中英文), 2019, 12(4): 888-895. doi: 10.3788/CO.20191204.0888
WANG Xian-shuang, GUO Shuai, XU Xiang-jun, LI Ang-ze, HE Ya-ge, GUO Wei, LIU Rui-bin, ZHANG Wei-jing, ZHANG Tong-lai. Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and raman spectroscopy[J]. Chinese Optics, 2019, 12(4): 888-895. doi: 10.3788/CO.20191204.0888
Citation: WANG Xian-shuang, GUO Shuai, XU Xiang-jun, LI Ang-ze, HE Ya-ge, GUO Wei, LIU Rui-bin, ZHANG Wei-jing, ZHANG Tong-lai. Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and raman spectroscopy[J]. Chinese Optics, 2019, 12(4): 888-895. doi: 10.3788/CO.20191204.0888

基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究

基金项目: 

国家自然科学基金项目 61574017

北京理工大学火炸药全链条创新专项 2017CX10007

详细信息
    作者简介:

    王宪双(1994-), 女, 山东济南人, 硕士研究生, 主要从事激光诱导激光光谱学, 含能材料的谱学分析, 爆炸反应动力学等方面的研究。E-mail:g5michelle@163.com

    刘瑞斌(1977-), 男, 河北承德人, 博士, 副教授, 博士生导师, 1999年、2003年于长春光机学院分别获得学士、硕士学位, 2007年于中国科学院物理研究所获得博士学位, 主要从事半导体材料和微纳光电器件光学性质、激光器、光电探测、激光光谱学、可调激光等方面的研究。E-mail:liuruibin8@gmail.com

  • 中图分类号: O433.4

Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and raman spectroscopy

Funds: 

National Natural Science Foundation of China 61574017

Beijing Institute of Technology Explosives Chain Innovation Project 2017CX10007

More Information
  • 摘要: 为了实现对四唑类化合物的快速非接触识别和分类,本文搭建了激光诱导击穿光谱和拉曼光谱集成测试系统。首先采集了4种四唑类化合物在1 064 nm激发波长下的拉曼光谱,包括四氮唑、5-氨基四氮唑、1,5-二氨基四氮唑和1-甲基-5-氨基四氮唑。通过对特定官能团拉曼峰位的分析,成功地将它们鉴别出来。然后基于激光诱导击穿光谱(LIBS)技术,采集各个样本的等离子体辐射光谱。选取140组光谱数据进行训练,建立分类模型,剩余60组数据对所得的类型区域的准确性进行验证。本文基于主成分分析(PCA)与支持向量机(SVM)相结合的算法,建立了两个分类模型。一是将全谱进行主成分分析,选取前64个主成分,利用支持向量机(SVM)算法建立模型。二是通过对比光谱差异,选取10个特征波长进行主成分分析,选取前3个主成分建立模型。发现前者平均预测准确度只有88.3%,而后者60个光谱样本点全部落在其对应的标准样品类型区域内,分类准确度达到100%。实验结果表明,将激光诱导击穿光谱和拉曼光谱联合使用,可以准确地鉴别四唑类化合物。

     

  • 图 1  LIBS-Raman集成测试系统

    Figure 1.  Schematic diagram of integrated LIBS-Ramansystem

    图 2  四唑类化合物的Raman光谱图

    Figure 2.  Raman spectra of tetrazole compounds

    图 3  四唑类化合物的LIBS光谱图

    Figure 3.  LIBS spectra of tetrazole compounds

    图 4  前3个主成分对原始数据的解释率及累计解释率

    Figure 4.  Individual interpretation rate(left, bar graph) and cumulative interpretation rates(right, line) of the first three principal components to the original data

    图 5  前3个主成分的三维得分图

    Figure 5.  Scoreplot of the tetrazole compounds samples′ LIBS spectra with respect to the first three principal components

    表  1  四唑类化合物的主要信息

    Table  1.   Main information of tetrazole compounds

    Code Compounds Molecular formula Chemical structure
    No.1 Tetrazolium CH2N4
    No.2 5-aminotetrazolium CH3N5
    No.3 1, 5-diaminodiazole CH4N6
    No.4 1-methyl-5-aminotetrazoliu C2H5N5
    下载: 导出CSV

    表  2  基于特征变量降维的四唑类化合物分类结果

    Table  2.   Classification results of tetrazole compounds based on dimension reduction of characteristic variables

    Variable Number Predictive variable Accuracy/%
    No.1 No.2 No.3 No.4
    No.1 15 15 0 0 0 100
    No.2 15 0 15 0 0 100
    No.3 15 0 0 15 0 100
    No.4 15 0 0 0 15 100
    下载: 导出CSV

    表  3  基于全谱降维的四唑类化合物分类结果

    Table  3.   Classification results of tetrazole compounds based on dimension reduction of full spectrum

    Variable Number Predictive variable Accuracy/%
    No.1 No.2 No.3 No.4
    No.1 15 9 6 0 0 60
    No.2 15 0 14 1 0 93.3
    No.3 15 0 0 15 0 100
    No.4 15 0 0 0 15 100
    下载: 导出CSV
  • [1] 彭蕾, 李玉川, 杨雨璋, 等.双环和多环四唑含能化合物的合成研究进展[J].有机化学, 2012, 32(4):667-676. http://d.old.wanfangdata.com.cn/Periodical/yjhx201204004

    PENG L, LI Y CH, YANG Y ZH, et al.. Research progress in synthesis of energetic compounds of bicyclo-and multicyclo-tetrazoles[J]. Chinese Journal of Organic Chemistry, 2012, 32(4):667-676.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjhx201204004
    [2] UCHIYAMA Y, DOLPHIN J S, HARLOW R L, et al.. The zwitterionic structure of the parent amidinium tetrazolide and a rare tetrazole ring-opening reaction[J]. Australian Journal of Chemistry, 2013, 67(3):405-410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a3dc7b4566d5801bba4b80500a7815d
    [3] SAVOLAINEN M A, HAN X P, WU J. Regio selective formal hydroamination of styrenes with 1-phenyl-1H-tetrazole-5-thiol[J]. Organic Letters, 2014, 16(17):4349-4351. doi: 10.1021/ol5020416
    [4] 张悦阳, 冯永安, 张博, 等.一水合双四唑乙烷氨基胍的制备及性能研究[J].火炸药学报, 2016, 39(5):74-78. http://d.old.wanfangdata.com.cn/Periodical/hzyxb201605012

    ZHANG Y Y, FENG Y A, ZHANG B, et al.. Preparation and properties of bitetrazolyethane aminoguanidine[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5):74-78.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hzyxb201605012
    [5] ZHANG W, TANG Y, SHI A R, et al.. Recent developments in spectroscopic techniques for the detection of explosives[J]. Materials, 2018, 11(8):1364. doi: 10.3390/ma11081364
    [6] SLEIMAN J B, BOUSQUET B, PALKA N, et al.. Quantitative analysis of hexahydro-1, 3, 5-trinitro-1, 3, 5, triazine/pentaerythritol tetranitrate(RDX-PETN) mixtures by terahertz time domain spectroscopy[J]. Applied Spectroscopy, 2015, 69(12):1464-1471. doi: 10.1366/15-07937
    [7] ZHONG SH L, LU Y, KONG J W, et al.. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front Physics, 2016, 11(4):114202. doi: 10.1007/s11467-015-0543-4
    [8] 陈金忠, 白津宁, 宋广聚, 等.激光诱导击穿光谱技术测定土壤中元素Cr和Pb[J].红外与激光工程, 2013, 42(4):947-950. doi: 10.3969/j.issn.1007-2276.2013.04.020

    CHEN J ZH, BAI J N, SONG G J, et al.. Determination of Cr and Pb in soil by laser-induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2013, 42(4):947-950.(in Chinese) doi: 10.3969/j.issn.1007-2276.2013.04.020
    [9] 谷艳红, 李颖, 田野, 等.基于LIBS技术的钢铁合金中元素多变量定量分析方法研究[J].光谱学与光谱分析, 2014, 34(8):2244-2249. doi: 10.3964/j.issn.1000-0593(2014)08-2244-06

    GU Y H, LI Y, TIAN Y, et al.. Study on the multivariate quantitative analysis method for steel alloy elements using LIBS[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2244-2249.(in Chinese) doi: 10.3964/j.issn.1000-0593(2014)08-2244-06
    [10] 何秀文, 黄林, 刘木华, 等.激光诱导击穿光谱对大米中镉元素的检测分析[J].应用激光, 2014, 34(1):72-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201401014

    HE X W, HUANG L, LIU M H, et al.. Determination of Cd in rice by laser-induced breakdown spectroscopy[J]. Applied Laser, 2014, 34(1):72-75.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201401014
    [11] 刘晓娜, 吴志生, 乔延江.LIBS快速评价产品质量属性的研究进展及在中药的应用前景[J].世界中医药, 2013, 8(11):1269-1272. doi: 10.3969/j.issn.1673-7202.2013.11.002

    LIU X N, WU ZH SH, QIAO Y J. Review on rapid evaluation of product quality attributes and application prospects in Chinese materia medica[J]. World Chinese Medicine, 2013, 8(11):1269-1272.(in Chinese) doi: 10.3969/j.issn.1673-7202.2013.11.002
    [12] 刘津, 孙通, 甘兰萍.基于内标法和CARS变量优选的倍硫磷含量LIBS检测[J].发光学报, 2018, 39(5):737-744. http://d.old.wanfangdata.com.cn/Periodical/fgxb201805019

    LIU J, SUN T, GAN L P. Detection of fenthion content by libs combined with internal standard and CARS variable selection method[J]. Chinese Journal of Luminescence, 2018, 39(5):737-744.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201805019
    [13] 王慧丽, 王建伟, 周强, 等.激光诱导击穿光谱法定量分析水泥中的铜元素[J].发光学报, 2017, 38(11):1553-1558. http://d.old.wanfangdata.com.cn/Periodical/fgxb201711020

    WANG H L, WANG J W, ZHOU Q, et al..Quantitative analysis of cu in cement by laser induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(11):1553-1558.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201711020
    [14] 李占锋, 王芮雯, 邓琥, 等.黄连、附片和茯苓内铜元素激光诱导击穿光谱分析[J].发光学报, 2016, 37(1):100-105. http://d.old.wanfangdata.com.cn/Periodical/fgxb201601016

    LI ZH F, WANG R W, DENG H, et al..Laser induced breakdown spectra copy of Cu in coptis chinensis, aconite root and poria cocos[J]. Chinese Journal of Luminescence, 2016, 37(1):100-105.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201601016
    [15] DE LUCIA F C, GOTTFRIED J L, MUNSON C A, et al.. Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues[J]. Applied Optics, 2008, 47(31):G112-G121. doi: 10.1364/AO.47.00G112
    [16] CHUNG J H, CHO S G. Nanosecond gated raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin of the Korean Chemical Society, 2014, 35(12):3547-3552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77245736fe24d4dd3d86b903add0eca6
    [17] JOHNSON P V, BEEGLE L W, KIM H I, et al.. Ion mobility spectrometry in space exploration[J]. International Journal of Mass Spectrometry, 2007, 262(1-2):1-15. doi: 10.1016/j.ijms.2006.11.001
    [18] SIVAKUMAR N, JOSEPH M, MANORAVI P, et al.. Development of an ion mobility spectrometer for detection of explosives[J]. Instrumentation Science & Technology, 2013, 41(1):96-108.
    [19] LEE J, PARK S, CHO S G, et al.. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry mass spectrometry[J]. Talanta, 2014, 120:64-70. doi: 10.1016/j.talanta.2013.11.059
    [20] MOROS J, LORENZO J A, LASERNA J J. Standoff detection of explosives:critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10):3353-3365. doi: 10.1007/s00216-011-4999-y
    [21] 李莹莹.5-乙烯基四唑的常压表征及其高压相变研究[D].长春: 吉林大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016080080.htm

    LI Y Y. The characterizations of 5-vinyltetrazole at ambient conditions and investigations of it's high pressure phase transition[D]. Changchun: Jilin University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1016080080.htm
    [22] 孙艳苓.5, 5'-偶氮四唑锌的合成与性能研究[D].南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319323.htm

    SUN Y L. Synthesis and characterization of zinc 5, 5'-azotetrazolate[D]. Nanjing: Nanjing University of Science and Technology, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319323.htm
    [23] LI A, GUO SH, WAZIR N, et al.. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings[J]. Optics Express, 2017, 25(22):27559-27569. doi: 10.1364/OE.25.027559
    [24] WANG X SH, LI A, WAZIR N, et al.. Accuracy enhancement of laser induced breakdown spectroscopy by safely low-power discharge[J]. Optics Express, 2018, 26(11):13973-13978. doi: 10.1364/OE.26.013973
    [25] 谢承利.激光诱导击穿光谱数据处理方法及在煤分析中的应用研究[D].武汉: 华中科技大学, 2009. http://d.wanfangdata.com.cn/Thesis/D088567

    XIE CH L. Study of the spectral data processing in laser induced breakdown spectroscopy analysis and its application in elemental analysis of coal[D]. Wuhan: Huazhong University of Science and Technology, 2009.(in Chinese) http://d.wanfangdata.com.cn/Thesis/D088567
    [26] KALAM S A, MURTHY N L, MATHI P, et al.. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8):1535-1546. doi: 10.1039/C7JA00136C
    [27] WANG J M, LIAO X Y, ZHENG P CH, et al.. Classification of Chinese herbal medicine by laser-induced breakdown spectroscopy with principal component analysis and artificial neural network[J]. Analytical Letters, 2018, 51(4):575-586. doi: 10.1080/00032719.2017.1340949
    [28] 杨志辉.基于机器学习算法在数据分类中的应用研究[D].太原: 中北大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10110-1017166993.htm

    YANG ZH H. Research on application of machine learning algorithm in data classification[D]. Taiyuan: North University of China, 2017.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10110-1017166993.htm
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  2525
  • HTML全文浏览量:  1137
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2018-11-19
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回