-
摘要: 为实现对大尺寸光学材料及系统元件的高精度对准测试,设计了一种新型Φ200 mm口径长焦距准直干涉测试装置。该装置以球面标准镜作为参考镜,结合斐索型透射式干涉机制和长焦距准直测试原理对凹球面大曲率半径光学元件进行面形精度检测,最大测试口径为Φ226.67 mm,且球面标准镜和球面标准反射镜同轴共球心,大幅度减小了测试空腔距离。结果表明,该系统空腔测试精度PV值为0.097λ@632.8 nm,RMS值为0.013λ@632.8 nm,系统重复稳定性优于λ/500@632.8 nm,可实现曲率半径为7 500~8 500 mm测试,且大曲率半径测试误差小于1/1 000。Abstract: In order to achieve high-precision alignment tests for large-size optical materials and system components, a new Φ200 mm long focal length collimation interference test device was designed. The device uses a spherical standard mirror as a reference mirror, combined with a phenotype transmissive interference mechanism and a long focal length collimation test principle to detect the surface accuracy of a concave spherical large curvature radius optical component. The maximum test aperture is Φ226.67 mm. The spherical standard mirror and spherical standard reflection mirror are coaxial with the center of the sphere, which greatly reduces the distance of the test cavity. The results show that the PV test accuracy of the system is λ/500@632.8 nm, and the radius of curvature test range is 7 500~8 500 mm with the test error of large curvature radius less than 1/1000.
-
表 1 系统空腔稳定性测试数据结果
Table 1. System cavity stability test results
序号 PV PEAK VALLY RMS 1 0.131 6 0.055 9 -0.075 7 0.017 6 2 0.098 4 0.041 8 -0.056 6 0.012 4 3 0.106 5 0.046 9 -0.059 6 0.012 5 4 0.099 3 0.052 2 -0.047 1 0.01 3 5 0.104 0.052 8 -0.051 2 0.013 8 6 0.097 3 0.051 -0.046 2 0.012 8 7 0.097 2 0.045 4 -0.051 8 0.013 1 8 0.097 6 0.051 5 -0.046 2 0.011 6 9 0.105 2 0.048 5 -0.056 8 0.013 7 10 0.105 2 0.052 5 -0.052 7 0.013 5 11 0.096 1 0.046 5 -0.049 5 0.013 12 0.094 3 0.042 6 -0.051 7 0.013 8 13 0.105 5 0.046 9 -0.068 6 0.013 2 14 0.176 6 0.061 5 -0.099 2 0.019 6 15 0.174 1 0.038 1 -0.042 1 0.014 1 16 0.088 7 0.083 3 -0.098 6 0.011 5 最大值 0.176 6 0.083 3 -0.042 1 0.019 6 最小值 0.088 7 0.038 1 -0.099 2 0.011 5 平均值 0.111 1 0.015 4 -0.059 6 0.013 7 RMS 0.015 6 0.007 5 0.010 2 0.001 8 -
[1] 韩振华.基于泰曼-格林干涉的球面面形在线检测仪研制[D].福州: 福建师范大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10394-1012494711.htmHAN ZH H. Develop of spherical surface online detector based on Twyman-Green interference[D]. Fuzhou: Fujian Normal University, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10394-1012494711.htm [2] 毛石磊.菲索干涉仪移相器关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2015. http://cdmd.cnki.com.cn/Article/CDMD-80139-1016003418.htmMAO SH L. Research on key technology of phase shifter of Fizeau interferometer[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1016003418.htm [3] 田伟, 王平, 王汝冬, 等.Φ150mm菲索干涉仪球面标准具结构分析与设计[J].光学技术, 2011, 37(3):275-278. http://d.old.wanfangdata.com.cn/Periodical/gxjs201103004TIAN W, WANG P, WANG R D, et al.. Analysis and design for the structure of reference spheres mirror in Φ150 mm Fizeau interferometer[J]. Optical Technique, 2011, 37(3):275-278.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjs201103004 [4] 张健.超高精度菲索干涉仪不确定度分析[D].长春: 中国科学院长春光学精密机械与物理研究所, 2011.ZHANG J. Uncertainty analysis for super-accuracy Fizeau interferometer[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011.(in Chinese) [5] 苏志德, 史振广, 彭吉, 等.菲索干涉仪中精确移相的实现[J].中国光学, 2013, 6(2):244-250. http://www.chineseoptics.net.cn/CN/abstract/abstract8900.shtmlSU ZH D, SHI ZH G, PENG J, et al.. Implementation of accurate phase shift in Fizeau interferometer[J]. Chinese Optics, 2013, 6(2):244-250.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8900.shtml [6] 黄深旺, 陈磊, 陈进榜, 等.斐索型球面干涉仪移相误差的探讨[J].光子学报, 1996, 25(10):883-888. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB610.005.htmHUANG SH W, CHEN L, CHEN J B, et al.. Research on phase-shifting errors in a spherical-wave Fizeau interferometer[J]. Acta Photonica Sinica, 1996, 25(10):883-888.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB610.005.htm [7] 吴航行.激光球面干涉仪系统误差的测量[J].光学仪器, 2004, 26(3):14-17. doi: 10.3969/j.issn.1005-5630.2004.03.003WU H X. Measurement of the systematic error of the laser sphericity interferometer[J]. Optical Instruments, 2004, 26(3):14-17.(in Chinese) doi: 10.3969/j.issn.1005-5630.2004.03.003 [8] 贺军峰, 崔庚彦.高精度大口径球面干涉仪光学系统的设计探讨[J].技术与市场, 2014, 21(4):46-47, 49. doi: 10.3969/j.issn.1006-8554.2014.04.024HE J F, CUI G Y. Design of high precision large diameter spherical interferometer optical system[J]. Technology and Market, 2014, 21(4):46-47, 49.(in Chinese) doi: 10.3969/j.issn.1006-8554.2014.04.024 [9] 赵智亮, 夏伯才, 陈立华, 等.相移干涉测量中相移误差的自修正[J].光学 精密工程, 2013, 21(5):1116-1121. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305004ZHAO ZH L, XIA B C, CHEN L H, et al.. Self-correction of phase step error in phase shifting interferometric measurement[J]. Opt. Precision Eng., 2013, 21(5):1116-1121.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305004 [10] KIM I W, LEE C M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining[J]. Applied Thermal Engineering, 2016, 100:636-645. doi: 10.1016/j.applthermaleng.2016.02.005 [11] YANG N Y, LEE J. Measurement and prediction of thermal errors of a CNC machining center using two spherical balls[J]. Journal of Materials Processing Technology, 1998, 75(1-3):180-189. doi: 10.1016/S0924-0136(97)00316-6 [12] 杨志文.菲索型球面干涉仪测试精度分析[J].长春光学精密机械学院学报, 1988(2):74-80. http://www.cnki.com.cn/Article/CJFDTOTAL-CGJM198802012.htmYANG ZH W. Measuring accuracy of the Fizeau spherical mirror interferometer[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1988(2):74-80.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-CGJM198802012.htm