-
摘要: 随着激光二极管技术的发展,以及一些先进热管理方案和新型加工工艺的涌现,固体激光器的输出功率已达到百千瓦量级,而光束质量的控制问题却日益凸显。本文归纳了板条激光器的光束质量控制技术,对当前已经实现了的几种技术路线进行了深入细致的分析,包括静态相位校正技术、非线性光学校正技术、自适应光学校正技术、几何光学校正技术等,并分别介绍了其工作原理、研究进展以及优缺点。Abstract: With the rapid development of laser diodes and the emergence of advanced thermal management technology and new processing techniques, the average power of solid-state lasers has already achieved levels of 100 kW in recent years, while problems with beam quality control become increasingly prominent. This paper summarizes the beam quality control technology of slab lasers. Several technical approaches are analyzed in detail, including the static phase corrector, nonlinear optics correction technology, adaptive optics correction technology, geometrical optics correction technology, etc. Their principle, current research progress, advantages and disadvantages are introduced respectively.
-
Key words:
- slab lasers /
- thermal effects /
- wavefront aberrations /
- aberration correction /
- beam quality
-
表 1 AO系统进行像差校正的代表性成果
Table 1. Representative results of aberration correction used by AO system
年份 单位 功率 光束质量 2007 诺·格公司 15 kW(平均) 1.28×DL 2009 诺·格公司 100 kW(平均) 2.9×DL 2012 中科院光电所 265 W(平均) 6.2×DL(β) 2013 国防科技大学 11.3 kW(平均) 4.06×DL(β) 2015 中科院理化所 8.2 kW(平均) 3.5×DL(β) 2018 中科院光电所 750 MW(峰值) 1.64×DL(β) -
[1] 周寿桓, 赵鸿, 唐小军.高平均功率全固态激光器[J].中国激光, 2009, 36(7):1605-1618. http://d.old.wanfangdata.com.cn/Periodical/zgjg200907002ZHOU SH H, ZHAO H, TANG X J. High average power laser diode pumped solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7):1605-1618.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjg200907002 [2] 李晋闽.高平均功率全固态激光器发展现状、趋势及应用[J].激光与光电子学进展, 2008, 45(7):16-29. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200807004LI J M. Development, trend and application of high average power diode pumped lasers[J]. Laser & Optoelectronics Progress, 2008, 45(7):16-29.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200807004 [3] MARTIN W S, CHERNOCH J P. Multiple internal reflection face-pumped laser: US, 3633126[P].1972-01-04. [4] CHEN X M, XU L, HU H, et al.. High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature[J]. Optics Express, 2016, 24(21):24517-24523. doi: 10.1364/OE.24.024517 [5] GOODNO G D, PALESE S, HARKENRIDER J, et al.. Yb:YAG power oscillator with high brightness and linear polarization[J]. Optics Letters, 2001, 26(21):1672-1674. doi: 10.1364/OL.26.001672 [6] REDMOND S, MCNAUGHT S, ZAMEL J, et al.. 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C]. Proceedings of 2007 Conference on Lasers and Electro-Optics, IEEE, 2007: 1-2. [7] MAO Y F, ZHANG H L, CUI J H, et al.. 25 MJ, 5 kHz, 3 ns, Nd:YAG discrete path slab ampliter using a hybrid resonator[J]. Appl. Opt., 2017, 56(10):2741-2744. doi: 10.1364/AO.56.002741 [8] 王建磊, 李磊, 乔亮, 等.端面抽运复合Nd:YAG陶瓷板条激光介质温度和应力分布的理论分析[J].中国激光, 2009, 36(7):1777-1783. http://d.old.wanfangdata.com.cn/Periodical/zgjg200907029WANG J L, LI L, QIAO L, et al.. Theoretical analysis of temperature and stress distribution in end-pumped composite ceramic Nd:YAG laser slab[J]. Chinese Journal of Lasers, 2009, 36(7):1777-1783.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjg200907029 [9] 陈林, 贺少勃, 刘建国, 等.新一代百千瓦高平均功率板条激光器研究进展[J].激光与光电子学进展, 2009, 46(1):37-42. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200901007CHEN L, HE SH B, LIU J G, et al.. Progress of hundred-kilowatt high-average-power slab laser[J]. Laser & Optoelectronics Progress, 2009, 46(1):37-42.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200901007 [10] INJEYAN H, GOODNO G D. High Power Laser Handbook[M]. New York:McGraw-Hill Professional, 2011:187-200. [11] 靳强, 魏晓羽, 高健存, 等.连续16 W二极管端面泵浦混合腔Nd:YVO4板条激光器[J].量子电子学报, 2005, 22(4):528-533. doi: 10.3969/j.issn.1007-5461.2005.04.008JIN Q, WEI X Y, GAO J C, et al.. Diode end pumped hybrid cavity Nd:YVO4 slab laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4):528-533.(in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.008 [12] MA X H, BI J Z, HOU X, et al.. Conductively cooled all-solid-state zigzag slab laser[J]. Chinese Optics Letters, 2008, 6(5):366-368. doi: 10.3788/COL20080605.0366 [13] CHEN ZH ZH, XU Y T, GUO Y D, et al.. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier[J]. Applied Optics, 2015, 54(16):5011-5015. doi: 10.1364/AO.54.005011 [14] CHEN Y, LIU W, BO Y, et al.. High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser[J]. Applied Physics B, 2013, 111(1):111-116. doi: 10.1007/s00340-012-5313-1 [15] 雷翔.板条固体激光器光束净化控制技术研究[D].成都: 中国科学院研究生院(光电技术研究所), 2013: 13-20. http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026490.htmLEI X. Research on beam cleanup of slab lasers[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013: 13-20.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026490.htm [16] BANERJEE S, ERTEL K, MASON P D, et al.. DiPOLE:a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser[J]. Optics Express, 2015, 23(15):19542-19551. doi: 10.1364/OE.23.019542 [17] HUANG Y, MENG J Q, ZHANG L L, et al.. The analysis of the thermal effects of double-slab Nd:YAG laser medium[J]. Proceedings of SPIE, 2005, 5627:397-405. doi: 10.1117/12.573590 [18] GANIJA M, OTTAWAY D, VEITCH P, et al.. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser[J]. Optics Express, 2013, 21(6):6973-6978. doi: 10.1364/OE.21.006973 [19] HOU X, LU Y T. Thermal effects of Diode side-pumped solid-state slab laser[J]. Proceedings of SPIE, 2005, 5627:510-516. doi: 10.1117/12.576044 [20] ERTEL K, BANERJEE S, MASON P D, et al.. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation[J]. Optics Express, 2011, 19(27):26610-26626. doi: 10.1364/OE.19.026610 [21] YANG Q, ZHU X L, MA J, et al.. Diode-pumped Nd:YLF slab master oscillator power amplifier laser system with 655 mJ output at 50 Hz repetition rate[J]. Chinese Optics Letters, 2015, 13(6):061401. doi: 10.3788/COL201513.061401 [22] CHENG X J, XU J Q, HANG Y, et al.. High-power diode-end-pumped Tm:YAP and Tm:YLF slab lasers[J]. Chinese Optics Letters, 2011, 9(9):091406. doi: 10.3788/COL201109.091406 [23] FU X, LI P L, LIU Q, et al.. 3 kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15):18421-18432. doi: 10.1364/OE.22.018421 [24] SIEBOLD M, LOESER M, HARZENDORF G, et al.. High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers[J]. Optics Letters, 2014, 39(12):3611-3614. doi: 10.1364/OL.39.003611 [25] 赵爽.高功率高光束质量全固态板条激光器的研究[D].济南: 山东大学, 2010: 21-27. http://cdmd.cnki.com.cn/Article/CDMD-10422-2010099594.htmZHAO SH. Study on high power and high beam quality solid-state slab laser[D]. Ji'nan: Shandong University, 2010: 21-27.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10422-2010099594.htm [26] RUTHERFORD T S, TULLOCH W M, SINHA S, et al.. Yb:YAG and Nd:YAG edge-pumped slab lasers[J]. Optics Letters, 2001, 26(13):986-988. doi: 10.1364/OL.26.000986 [27] 刘欢, 李青华, 高松, 等.角抽运复合板条激光器热焦距计算方法[J].中国激光, 2012, 39(6):0602008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201206008LIU H, LI Q H, GAO S, et al.. Theoretical study on thermal focal length of corner-pumped lasers[J]. Chinese Journal of Lasers, 2012, 39(6):0602008.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201206008 [28] WANG J L, SHI X CH, YIN L, et al.. Derivation and analysis of frantz-nodvik equation for face-pumped zig-zag slab laser amplifier[C]. Proceedings of 2009 Conference on Lasers & Electro Optics & the Pacific Rim Conference on Lasers and Electro-Optics, IEEE, 2009: 1-2. [29] PALESE S, HARKENRIDER J, LONG W, et al.. High brightness, end-pumped, conduction cooled Nd: YAG zig-zag slab laser architecture[C]. Proceedings of Advanced Solid State Lasers 2001, Optical Society of America, 2001. [30] LIU H, LIU Q, GONG M L. Efficient corner-pumped Nd:YAG/YAG composite slab 1.1μm laser[J]. Optics Express, 2010, 18(19):19603-19611. doi: 10.1364/OE.18.019603 [31] KÖRNER J, HEIN J, KAHLE M, et al.. High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses[J]. Proceedings of SPIE, 2011, 8080:80800D. doi: 10.1117/12.887408 [32] BETT T H, BARNES A R, HOPPS N W, et al.. Development of static phase control elements for high-power solid state lasers[J]. Proceedings of SPIE, 2001, 4440:93-100. doi: 10.1117/12.448028 [33] WILLIAMS W H. Simulations of a phase corrector plate for the National Ignition Facility[J]. Proceedings of SPIE, 1999, 3492:355-362. doi: 10.1117/12.354147 [34] BETT T H, BARNES A R, HOPPS N W, et al.. Application of static phase control elements to high-power solid state lasers[J]. Proceedings of SPIE, 2001, 4270:177-191. doi: 10.1117/12.424672 [35] LUMER Y, MOSHE I, JACKEL S, et al.. Use of phase corrector plates to increase the power of radially polarized oscillators[J]. Journal of the Optical Society of America B, 2010, 27(7):1337-1342. doi: 10.1364/JOSAB.27.001337 [36] 张锐, 张小民, 粟敬钦, 等.用于惯性约束聚变驱动器的静态相位控制元件[J].中国激光, 2006, 33(3):311-315. doi: 10.3321/j.issn:0258-7025.2006.03.005ZHANG R, ZHANG X M, SU J Q, et al.. Static phase control elements for inertial confinement fusion drivers[J]. Chinese Journal of Lasers, 2006, 33(3):311-315.(in Chinese) doi: 10.3321/j.issn:0258-7025.2006.03.005 [37] 李勇.重复频率受激布里渊散射光束波前畸变补偿的研究[D].哈尔滨: 哈尔滨工业大学, 2008: 7-22. http://cdmd.cnki.com.cn/Article/CDMD-10213-2009290704.htmLI Y. Investigation on compensate phase aberration of repetition laser by SBS-PCM[D]. Harbin: Harbin Institute of Technology, 2008: 7-22.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-2009290704.htm [38] 宁永刚, 聂劲松.布里渊增强四波混频技术及其应用[J].光电技术应用, 2005, 20(1):17-19, 23. doi: 10.3969/j.issn.1673-1255.2005.01.005NING Y G, NIE J S. Study and application of BEFWM technology[J]. Electro-Optic Technology Application, 2005, 20(1):17-19, 23.(in Chinese) doi: 10.3969/j.issn.1673-1255.2005.01.005 [39] 王昊成, 樊仲维, 余锦, 等.带SBS相位共轭镜的高重复频率高功率激光系统研究进展[J].激光与光电子学进展, 2014, 51(4):040001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201404001WANG H CH, FAN ZH W, YU J, et al.. Research progress of high repetition rate and high power laser with SBS-phase conjugate mirror[J]. Laser & Optoelectronics Progress, 2014, 51(4):040001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201404001 [40] YASUHARA R, KAWASHIMA T, SEKINE T, et al.. 213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15):1711-1713. doi: 10.1364/OL.33.001711 [41] 许平.基于SBS的辐射板条固体激光输出研究[D].哈尔滨: 哈尔滨工业大学, 2013: 25-50. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002946.htmXU P. Research on output of radial slabs solid-state laser based on SBS[D]. Harbin: Harbin Institute of Technology, 2013, 25-50.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002946.htm [42] KOVALEV V I, HARRISON R G, SCOTT A M. 300 W quasi-continuous-wave diffraction-limited output from a diode-pumped Nd:YAG master oscillator power amplifier with fiber phase-conjugate stimulated Brillouin scattering mirror[J]. Optics Letters, 2005, 30(24):3386-3388. doi: 10.1364/OL.30.003386 [43] 赵智刚, 崔玲玲, 童立新, 等.带固体相位共轭镜的全固态脉冲抽运高重复频率大能量单纵模MOPA激光器[J].中国激光, 2010, 37(12):2949-2953. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201012001ZHAO ZH G, CUI L L, TONG L X, et al.. All-solid-state high pulse repetition rate high pulse energy single-longitudinal-mode MOPA laser system with solid-state phase conjugating mirror[J]. Chinese Journal of Lasers, 2010, 37(12):2949-2953.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201012001 [44] 葛传文, 肖爽.高平均功率光纤受激布里渊散射相位共轭镜的研究与探讨[J].激光与光电子学进展, 2015, 52(6):070002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201507002GE CH W, XIAO SH. Investigation and discussion on high average-power fiber stimulated brillouin scattering phase-conjugation mirror[J]. Laser & Optoelectronics Progress, 2015, 52(6):070002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201507002 [45] 晏虎, 雷翔, 刘文劲, 等.37单元双压电片变形镜板条激光光束净化[J].强激光与粒子束, 2012, 24(7):1663-1666. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201207034YAN H, LEI X, LIU W J, et al.. Beam cleanup of slab laser with 37-element bimorph deformable mirror[J]. High Power Laser and Particle Beams, 2012, 24(7):1663-1666.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201207034 [46] ZENDZIAN W, JABCZYNSKI J K, KASKOW M, et al.. Diode side pumped Nd:YAG slab laser with self-adaptive resonator[J]. Proceedings of SPIE, 2012, 8702:870208. https://www.researchgate.net/publication/258814333_Diode_side_pumped_NdYAG_slab_laser_with_self-adaptive_resonator [47] ZENDZIAN W, KASKOW M, JABCZYNSKI J K. Diode-pumped, actively Q-switched Nd:YAG laser with self-adaptive, reciprocal, closed-loop resonator[J]. Optics Express, 2014, 22(25):30657-30662. doi: 10.1364/OE.22.030657 [48] KASKOW M, GALECKI L, ZENDZIAN W, et al.. Side-pumped neodymium laser with self-adaptive, nonreciprocal cavity[J]. Opto-Electronics Review, 2016, 24(1):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=oere-2016-0005 [49] 孙哲, 李强, 程秋桐, 等.高效率连续半导体抽运开环互易式全息光栅Nd:YVO4板条激光器[J].中国激光, 2014, 41(7):0702003. http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201407004.htmSUN ZH, LI Q, CHENG Q T, et al.. Efficient continuous diode-pumped Nd:YVO4 slab laser with an opened-loop reciprocal dynamic holographic cavity[J]. Chinese Journal of Lasers, 2014, 41(7):0702003.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201407004.htm [50] 宋阳.基于SPGD的无波前探测自适应光学技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015: 9-15. http://www.irgrid.ac.cn/handle/1471x/1004814SONG Y. Study on non-wavefront sensor adaptive optics technology based on stochastic parallel gradient descent algorithm[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015: 9-15.(in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004814 [51] REDMOND S, MCNAUGHT S, ZAMEL J, et al.. 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C]. Proceedings of 2007 Conference on Lasers and Electro-Optics, IEEE, 2007. [52] LUBEIGT W, VALENTINE G, BURNS D. Enhancement of laser performance using an intracavity deformable membrane mirror[J]. Optics Express, 2008, 16(15):10943-10955. doi: 10.1364/OE.16.010943 [53] MCNAUGHT S J, ASMAN C P, INJEYAN H, et al.. 100-kW coherently combined Nd: YAG MOPA laser array[C]. Proceedings of Frontiers in Optics 2009, Optical Society of America, 2009. [54] YANG P, XU B, LEI X, et al.. Correction of static and thermal aberrations of a zigzag slab amplifier employing a wave-front sensor-less adaptive optics system[J]. Chinese Optics Letters, 2012, 10(S24):S21409. [55] 向汝建, 何忠武, 徐宏来, 等.固体板条MOPA激光光束质量主动控制[J].强激光与粒子束, 2013, 25(2):358-362. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302019XIANG R J, HE ZH W, XU H L, et al.. Closed-loop beam quality control for MOPA solid slab laser[J]. High Power Laser and Particle Beams, 2013, 25(2):358-362.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302019 [56] YANG P, WANG SH, DONG L ZH, et al.. Adaptive beam cleanup of a 1.3 kW pulsed slab amplifier[C]. Proceedings of CLEO: Science and Innovations 2014, Optical Society of America, 2014. [57] 于信.板条激光低阶像差自动校正技术研究[D].成都: 电子科技大学, 2018: 1-14. http://cdmd.cnki.com.cn/Article/CDMD-10614-1018975098.htmYU X. Research on automatic low-order aberration correction of slab laser[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-14.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10614-1018975098.htm [58] 胡诗杰.全光路像差校正自适应光学技术和双变形镜自适应光学技术研究[D].成都: 电子科技大学, 2009: 1-14. http://cdmd.cnki.com.cn/article/cdmd-10614-2010234383.htmHU SH J. The study of technology of the adaptive optics for all path aberration correction and double deformable mirrors adaptive optics[D]. Chengdu: University of Electronic Science and Technology of China, 2009: 1-14.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10614-2010234383.htm [59] 顾殿雨.反射式光束整形系统的低阶像差校正方法研究[D].长沙: 国防科学技术大学, 2013: 1-8. http://cdmd.cnki.com.cn/Article/CDMD-90002-1015958294.htmGU D Y. Study on compensation of low order aberrations based on beam shaping system[D]. Changsha: National University of Defense Technology, 2013: 1-8.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90002-1015958294.htm [60] 傅筱莹.板条固体激光器光束整形扩束系统设计研究[D].成都: 中国科学院研究生院(光电技术研究所), 2015: 1-14. http://cdmd.cnki.com.cn/Article/CDMD-80151-1015951616.htmFU X Y. Research on beam shaping system design of slab lasers[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2015: 1-14.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80151-1015951616.htm [61] 郭建增, 刘铁根, 王振华, 等.基于整形光路的低阶像差校正方法[J].强激光与粒子束, 2012, 24(8):1797-1800. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201208008GUO J Z, LIU T G, WANG ZH H, et al.. Method for lower order aberration correction based on beam shaping[J]. High Power Laser and Particle Beams, 2012, 24(8):1797-1800.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201208008 [62] GOODNO G D, PALESE S, HARKENRIDER J, et al.. High average-power Yb: YAG end-pumped zig-zag slab laser[C]. Proceedings of Advanced Solid State Lasers 2001, Optical Society of America, 2001. [63] GOODNO G D, KOMINE H, MCNAUGHT S J, et al.. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 2006, 31(9):1247-1249. doi: 10.1364/OL.31.001247 [64] LI D J, MA ZH, HAAS R, et al.. Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO[J]. Optics Letters, 2007, 32(10):1272-1274. doi: 10.1364/OL.32.001272 [65] LI D J, MA ZH, HAAS R, et al.. Diode-end-pumped double Nd:YLF slab laser with high energy, short pulse width, and diffraction-limited quality[J]. Optics Letters, 2008, 33(15):1708-1710. doi: 10.1364/OL.33.001708 [66] LIU W G, ZHOU Q, FENG F, et al.. Active compensation of low-order aberrations with reflective beam shaper[J]. Optical Engineering, 2014, 53(9):096103. doi: 10.1117/1.OE.53.9.096103 [67] FLECK J A J R, LAYNE C. Study of self-focusing damage in a high-power Nd:glass-rod amplifier[J]. Applied Physics Letters, 1973, 22(9):467-469. doi: 10.1063/1.1654715 [68] XUE ZH W, GUO Y D, CHEN ZH ZH, et al.. Actively compensation of low order aberrations by refractive shaping system for high power slab lasers[J]. Optics & Laser Technology, 2015, 75:71-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a61b966b8e1694bf4fb16a8fe17d2eb8 [69] YU X, DONG L ZH, LAI B H, et al.. Automatic low-order aberration correction based on geometrical optics for slab lasers[J]. Applied Optics, 2017, 56(6):1730-1739. doi: 10.1364/AO.56.001730 [70] YU X, DONG L ZH, LAI B H, et al.. Automatic low-order aberrations compensator for a conduction-cooled end-pumped solid-state zigzag slab laser[J]. Optics Communications, 2017, 402:483-488. doi: 10.1016/j.optcom.2017.06.048 [71] GRÉDIAC M. Method for surface reconstruction from slope or curvature measurements of rectangular areas[J]. Applied Optics, 1997, 36(20):4823-4829. doi: 10.1364/AO.36.004823 [72] DAI G M, MAHAJAN V N. Orthonormal polynomials in wavefront analysis:error analysis[J]. Applied Optics, 2008, 47(19):3433-3445. doi: 10.1364/AO.47.003433 [73] SUN W Q, CHEN L, TUYA W, et al.. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials[J]. Journal of the Optical Society of America A, 2013, 30(12):2539-2546. doi: 10.1364/JOSAA.30.002539 [74] LAI B H, DONG L ZH, CHEN SH Q, et al.. Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system[J]. Chinese Optics Letters, 2016, 14(9):091402. doi: 10.3788/COL201614.091402 [75] YU X, DONG L ZH, LAI B H, et al.. Adaptive aberration correction of a 5 J/6.6 ns/200 Hz Solid-state Nd:YAG laser[J]. Optics Letters, 2017, 42(14):2730-2733. doi: 10.1364/OL.42.002730