留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光栅精密位移测量技术发展综述

高旭 李舒航 马庆林 陈伟

高旭, 李舒航, 马庆林, 陈伟. 光栅精密位移测量技术发展综述[J]. 中国光学(中英文), 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741
引用本文: 高旭, 李舒航, 马庆林, 陈伟. 光栅精密位移测量技术发展综述[J]. 中国光学(中英文), 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741
GAO Xu, LI Shu-Hang, MA Qing-lin, CHEN Wei. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741
Citation: GAO Xu, LI Shu-Hang, MA Qing-lin, CHEN Wei. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 2019, 12(4): 741-752. doi: 10.3788/CO.20191204.0741

光栅精密位移测量技术发展综述

基金项目: 

国家自然科学基金 51505078

吉林省科技厅优秀青年人才基金 20180520187JH

吉林省教育厅"十三五"科学技术项目基金 JJKH20190544KJ

中国博士后面上基金 2018M641778

详细信息
    作者简介:

    高旭(1987—),女,黑龙江青冈人,博士研究生,讲师,2009年于吉林大学获得学士学位,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光电精密位移测量技术和光电传感器方面的研究。E-mail:gaox19870513@163.com

    李舒航(1995—),女,吉林长春人,硕士研究生,2018年于长春理工大学获得学士学位,主要从事光电精密位移测量技术方面的研究。E-mail:306746976@qq.com

  • 中图分类号: TP29

Development of grating-based precise displacement measurement technology

Funds: 

National Natural Science Foundation of China 51505078

Outstanding Youth Fund of Jilin Science and Technology Department 20180520187JH

Jilin Provincial Department of Education "13th Five-Year" Science and Technology Project Fund JJKH20190544KJ

China Postdoctoral Science Foundation Funded Project 2018M641778

More Information
  • 摘要: 精密测量是精密机械加工的基础,是制造行业中影响制造精度的决定性因素之一,在当代精密机械制造领域应用广泛。基于光栅的精密位移测量系统以其对环境要求小,测量分辨率高等优点,在精密位移测量领域占据重要位置。基于光栅的精密位移测量系统包括光学测量系统、信号接收、电子学细分及整体装调几部分。本文主要针对光学测量光路部分进行综述介绍。首先介绍了经典光栅干涉位移测量原理;其次,综述了基于光栅的精密位移测量系统的关键技术现状;再次,对比分析了几种最具有代表性的测量技术,总结其优缺点;最后,对基于光栅的精密位移测量技术进行展望,揭示其高精度、高分辨力、高鲁棒性、微型化、多维化、多技术融合的发展趋势。

     

  • 图 1  经典双光栅位移测量系统光学结构

    Figure 1.  Optical structure of classical double grating displacement measurement system

    图 2  单光栅位移测量系统光学结构

    Figure 2.  Optical structure of single grating displacement measurement system

    图 3  三光栅位移测量原理图

    Figure 3.  Schematic diagram of three-grating displacement measurement

    图 4  二维平面光栅编码器基本结构

    Figure 4.  Basic structure of two dimension planar grating encoder

    图 5  编码原理

    Figure 5.  Coding principle

    图 6  三维位移测量光路图

    Figure 6.  Light path of three dimension displacement measurement

    图 7  三维测量实验装置

    Figure 7.  Experimental device of three dimension measuring

    图 8  外差利特罗式光栅干涉仪位移测量系统原理

    Figure 8.  Principle of displacement measurement system for heterodyne Littrow interferometer

    图 9  时栅位移测量原理

    Figure 9.  Principle of time grating displacement measurement

    图 10  时间光栅传感器原理图

    Figure 10.  Time grating sensor schematic

    图 11  光纤光栅原理图

    Figure 11.  Schematic diagram of fiber grating

    图 12  光纤布拉格位移传感器

    Figure 12.  Fiber Bragg displacement sensor

    表  1  基于光栅的位移测量系统优缺点对照表

    Table  1.   The advantages and disadvantages of grating-based precision displacement measurement

    系统名称 研究单位 优点 缺点
    三光栅组合干涉仪 中国台湾元智大学哈尔滨工业大学 最佳组合位移误差在10 nm以内测量的相位是360度,对环境干扰具有较强的免疫力 误差会随着三光栅有效栅距的增加而增加
    基于两个平行光栅的二维位移测量系统 哈尔滨工业大学超精密光电仪器工程研究所 可测量光栅平面的二维位移,利用扫描光栅代替棱镜对干涉信号的相位进行调制,使编码器结构紧凑 光栅结构复杂,实际装调难度高,精度、稳定性等参数有待验证,停留在实验室测试阶段
    基于正交衍射光栅的三维纳米位移传感器 上海交通大学 实现了三维纳米级的位移测量 安装定位要求高,结构复杂,处于试验测试阶段
    超精密外差利特罗式光栅干涉位移测量系统 清华大学机械工程系摩擦学国家重点实验室与超精密制造装备及控制北京市重点实验室 高环境鲁棒性,死程误差小 量程受对称光路结构的限制
    一种用于远距离、纳米精度的位移测量的时间光栅传感器 重庆理工大学机械检测技术与设备工程研究中心 测量范围大,测量精度达到纳米级,制造成本低,不需要被测物体匀速运动,利用时间量测量精度高 旋转磁场均匀度受速度制约,时栅的加工误差对测量精度影响大,高速动态测量易发生畸变
    光纤光栅(FBG)位移传感器 新加坡大学美国生物医学工程学院 抗电磁干扰、抗腐蚀性强,可同时实现对位移与温度的检测 测量精度较低,加工工艺复杂,信号解调设备复杂
    下载: 导出CSV
  • [1] 吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1):39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

    LV Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1):39-50.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml
    [2] 尚平.高精度衍射光栅干涉位移传感器及关键技术研究[D].合肥: 合肥工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10359-1012522187.htm

    SHANG P. Study on the key technology of high-resolution diffraction grating interferometric transducer of linear displacements[D]. Hefei: Hefei University of Technology, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10359-1012522187.htm
    [3] 刘焱, 王烨.位移传感器的技术发展现状与发展趋势[J].自动化技术与应用, 2013, 32(6):76-80, 101. http://d.old.wanfangdata.com.cn/Periodical/hljzdhjsyyy201306020

    LIU Y, WANG Y. Present status and trend of technical development of displacement sensor[J]. Techniques of Automation & Applications, 2013, 32(6):76-80, 101.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hljzdhjsyyy201306020
    [4] 江孝伟, 武华.一维增透亚波长光栅的研究[J].发光学报, 2017, 38(2):177-181 http://d.old.wanfangdata.com.cn/Periodical/fgxb201702008

    JIANG X W, WU H. Research of 1D sub-wavelength grating anti-reflection[J]. Chinese Journal of Luminescence, 2017, 38(2):177-181.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201702008
    [5] 刘桂香, 林海, 庞伟秀, 等.掺杂Sm2O3的向列相液晶TEB30A光栅衍射特性研究[J].液晶与显示, 2018, 33(10):851-856. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810005

    LIU G X, LIN H, PANG W X, et al.. Diffraction characteristics of nematic liquid crystal TEB30A grating doped with Sm2O3[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10):851-856.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201810005
    [6] 李文昊, 姜岩秀, 吴娜, 等.极紫外波段变栅距光栅刻槽密度变化及光谱分辨能力分析[J].发光学报, 2015, 36(9):1094-1099. http://d.old.wanfangdata.com.cn/Periodical/fgxb201509025

    LI W H, JIANG Y X, WU N, et al.. Analysis for groove density and spectral resolution of varied-line-space gratings in EUV spectrum[J]. Chinese Journal of Luminescence, 2015, 36(9):1094-1099.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201509025
    [7] 张爽, 朱万彬, 李健, 等.激光位移传感器传感探头微小型光学系统设计[J].中国光学, 2018, 11(6):1001-1010. http://www.chineseoptics.net.cn/CN/abstract/abstract9561.shtml

    ZHANG SH, ZHU W Q, LI J, et al.. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics, 2018, 11(6):1001-1010.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9561.shtml
    [8] 李秋顺, 向栋, 陈超, 等.单端面长周期光栅透射模式测量技术[J].发光学报, 2017, 38(8):1090-1096. http://d.old.wanfangdata.com.cn/Periodical/fgxb201708016

    LI Q SH, XIANG D, CHEN CH, et al.. Transmission mode measurement technique of long period grating based on a single end face[J]. Chinese Journal of Luminescence, 2017, 38(8):1090-1096.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201708016
    [9] 乔静, 谢生, 毛陆虹, 等.吸收增强的光栅型金属-半导体-金属光电探测器的优化设计[J].发光学报, 2018, 39(3):363-368. http://d.old.wanfangdata.com.cn/Periodical/fgxb201803016

    QIAO J, XIE SH, MAO L H, et al.. Optimum design of silicon-based metal-semiconductor-metal photodetector with subwavelength metal grating[J]. Chinese Journal of Luminescence, 2018, 39(3):363-368.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201803016
    [10] 王国超, 颜树华, 高雷, 等.光栅干涉位移测量技术发展综述[J].激光技术, 2010, 34(5):661-664, 716. doi: 10.3969/j.issn.1001-3806.2010.05.023

    WANG G CH, YAN SH H, GAO L, et al.. Development of displacement measurement technologies based on grating interferometry[J]. Laser Technology, 2010, 34(5):661-664, 716.(in Chinese) doi: 10.3969/j.issn.1001-3806.2010.05.023
    [11] 李琳.基于光栅衍射光干涉的位移测量技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2010. http://ir.ciomp.ac.cn/handle/181722/27122?mode=full&submit_simple=Show+full+item+record

    LI L. Displacement measuring technology based on diffractive light of grating interference[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010.(in Chinese) http://ir.ciomp.ac.cn/handle/181722/27122?mode=full&submit_simple=Show+full+item+record
    [12] 楚兴春.纳米光栅干涉位移测量关键技术的研究[D].长沙: 国防科学技术大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-90002-2006127533.htm

    CHU X CH. Research on key technologies of nanometer displacement measurement by grating interferometry[D]. Changsha: National University of Defense Technology, 2005.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90002-2006127533.htm
    [13] WEI CH H, YAN SH H, LIN C B, et al.. Compact grating displacement measurement system with a 3×3 coupler[J]. Chinese Optics Letters, 2015, 13(5):051301. doi: 10.3788/COL201513.051301
    [14] HSU C C, CHEN H, TSENG H Y, et al.. High displacement resolution encoder by using triple grating combination interferometer[J]. Optics & Laser Technology, 2018, 105:221-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31e584916bdd0278b6136fdab3de4ca3
    [15] 苏东风, 续志军.基于反射式三光栅光学系统的金属光栅编码器[J].红外与激光工程, 2008, 7(S1):84-86. http://d.old.wanfangdata.com.cn/Conference/6571260

    SU D F, XU ZH J. Metal grating encoder based on three-grating reflection optical system[J]. Infrared and Laser Engineering, 2008, 37(S1):84-86.(in Chinese) http://d.old.wanfangdata.com.cn/Conference/6571260
    [16] HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 2015, 23(3):2451-2465. doi: 10.1364/OE.23.002451
    [17] 夏豪杰.高精度二维平面光栅测量系统及关键技术研究[D].合肥: 合肥工业大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10359-2006073398.htm

    XIA H J. Research on precise 2-D plane grating measurement system and key technology[D]. Hefei: Hefei University of Technology, 2006.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10359-2006073398.htm
    [18] HSU C C, KAO M CH, HUANG K C, et al.. Reflection type displacement sensor with volume hologram for in-plane displacement measurement[C]. Proceedings of 2012 International Conference on Measurement, Information and Control, IEEE, 2012: 13-16.
    [19] LIN J, GUAN J, WEN F, et al.. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 2017, 404:132-138. doi: 10.1016/j.optcom.2017.03.012
    [20] WEI P P, LU X, QIAO D CH, et al.. Two-dimensional displacement measurement based on two parallel gratings[J]. Review of Scientific Instruments, 2018, 89(6):065105. doi: 10.1063/1.5024637
    [21] LEE J Y, JIANG G A. Displacement measurement using a wavelength-phase-shifting grating interferometer[J]. Optics Express, 2013, 21(21):25553-25564. doi: 10.1364/OE.21.025553
    [22] GUO D M, YU Y G, KONG L W, et al.. Self-mixing grating interferometer with dual laser diodes for sensing of 2-D dynamic displacement[J]. IEEE Journal of Quantum Electronics, 2018, 54(4):7500106. https://ieeexplore.ieee.org/document/8450048
    [23] LI H, ZHOU CH H, WANG SH Q, et al.. Two-dimensional gold matrix method for encoding two-dimensional optical arbitrary positions[J]. Optics Express, 2018, 26(10):12742-12754. doi: 10.1364/OE.26.012742
    [24] HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 2013, 52(27):6840-6848. doi: 10.1364/AO.52.006840
    [25] 孔令胜, 王天聪, 蔡盛, 等.基于二维方孔光栅的平面三维显示[J].液晶与显示, 2010, 25(6):919-924. doi: 10.3969/j.issn.1007-2780.2010.06.029

    KONG L SH, WANG T C, CAI SH, et al.. Flat-panel 3D display based on 2D square hole barrier[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(6):919-924.(in Chinese) doi: 10.3969/j.issn.1007-2780.2010.06.029
    [26] LIU B SH, YUAN Y B, YIN ZH H. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor[J]. Proceedings of SPIE, 2017, 10458:1045818. doi: 10.1117/12.2285042.short?SSO=1
    [27] XIAO F, ZHAO R, SUN P. Three-dimensional displacement measurement based on the combination of digital image correlation and optical flow[J]. Applied Optics, 2016, 55(29):8207-8212. doi: 10.1364/AO.55.008207
    [28] 王磊杰, 张鸣, 朱煜, 等.超精密外差利特罗式光栅干涉仪位移测量系统[J].光学 精密工程, 2017, 25(12):2975-2985. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201712001

    WANG L J, ZHANG M, ZHU Y, et al.. A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Opt. Precision Eng., 2017, 25(12):2975-2985.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201712001
    [29] 陈航.外差式光栅粗/细位移测量系统的研究[D].哈尔滨: 哈尔滨工业大学, 2017.

    CHEN H. Research on heterodyne grating displacement measurement system with high/low displacement resolution[D]. Harbin: Harbin Institute of Technology, 2017.(in Chinese)
    [30] 彭东林, 刘成康, 谭为民.时空坐标转换理论与时栅位移传感器研究[J].仪器仪表学报, 2000, 21(4):338-342. doi: 10.3321/j.issn:0254-3087.2000.04.003

    PENG D L, LIU CH K, TAN W M. Study on the theory of time-space coordinate transformation and the time grating displacement sensor[J]. Chinese Journal of Scientific Instrument, 2000, 21(4):338-342.(in Chinese) doi: 10.3321/j.issn:0254-3087.2000.04.003
    [31] HSU C C, CHEN H, CHIANG C W, et al.. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry[J]. Optics Express, 2017, 25(24):30189-30202. doi: 10.1364/OE.25.030189
    [32] HSIEH H L, CHEN W. Heterodyne Wollaston laser encoder for measurement of in-plane displacement[J]. Optics Express, 2016, 24(8):8693-8707. doi: 10.1364/OE.24.008693
    [33] LEE J Y, LU M P, LIN K Y, et al.. Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry[J]. Applied Optics, 2012, 51(8):1095-1100. doi: 10.1364/AO.51.001095
    [34] 彭东林, 付敏, 陈锡侯, 等.典型位移传感器分类研究与时栅传感器特点分析[J].机械工程学报, 2018, 54(10):36-42. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201810006

    PENG D L, FU M, CHEN X H, et al.. Classification study on typical displacement sensors and analysis on the characteristics of time grating sensors[J]. Journal of Mechanical Engineering, 2018, 54(10):36-42.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201810006
    [35] CHEN Z R, PU H J, LIU X K, et al.. A time-grating sensor for displacement measurement with long range and nanometer accuracy[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11):3105-3115. doi: 10.1109/TIM.2015.2437633
    [36] 彭凯, 于治成, 刘小康, 等.单排差动结构的新型纳米时栅位移传感器[J].仪器仪表学报, 2017, 38(3):734-740. doi: 10.3969/j.issn.0254-3087.2017.03.028

    PENG K, YU ZH CH, LIU X K, et al.. Novel nanometer time-grating displacement sensor with single row differential structure[J]. Chinese Journal of Scientific Instrument, 2017, 38(3):734-740.(in Chinese) doi: 10.3969/j.issn.0254-3087.2017.03.028
    [37] LI M W, GENG H, WU Q N, et al.. Application of double metal/dielectric gratings in optical displacement detection[J]. Applied Optics, 2018, 57(13):3438-3443. doi: 10.1364/AO.57.003438
    [38] PU H J, LIU H ZH, LIU X K, et al.. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution[J]. Mechanical Systems and Signal Processing, 2018, 104:705-715. doi: 10.1016/j.ymssp.2017.11.017
    [39] HILL K O, FUJⅡ Y, JOHNSON D C, et al.. Photosensitivity in optical fiber waveguides:application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649. doi: 10.1063/1.89881
    [40] 李丽.光纤光栅位移传感系统关键技术的研究[D].天津: 天津大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10056-2008181712.htm

    LI L. Study on key techniques of fiber Bragg grating displacement sensoring[D]. Tianjin: Tianjin University, 2007.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-2008181712.htm
    [41] LI T L, SHI CH Y, REN H L. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution[J]. IEEE Photonics Technology Letters, 2017, 29(14):1199-1202. doi: 10.1109/LPT.2017.2712602
    [42] 谭跃刚, 陈宇佳, 李瑞亚, 等.高精度弓型光纤光栅微位移传感器[J].光学 精密工程, 2018, 26(3):556-564. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803006

    TAN Y G, CHEN Y J, LI R Y, et al.. High-precision bow-shaped fiber Bragg grating micro-displacement sensors[J]. Opt. Precision Eng., 2018, 26(3):556-564.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803006
    [43] 徐东升.一种新型光纤光栅局部位移计在小应变测量中的应用[J].岩土工程学报, 2017, 39(7):1330-1335. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201707020

    X43D SH. New fiber Bragg grating sensor-based local displacement transducer for small strain measurements of soil specimens[J]. Chinese Journal of Geotechnical Engineering , 2007, 39(7):1330-1335.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201707020
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4168
  • HTML全文浏览量:  3081
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2018-12-29
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回