留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

眼科光学相干层析成像的图像处理方法

蔡怀宇 张玮茜 陈晓冬 刘珊珊 韩晓艳

蔡怀宇, 张玮茜, 陈晓冬, 刘珊珊, 韩晓艳. 眼科光学相干层析成像的图像处理方法[J]. 中国光学(中英文), 2019, 12(4): 731-740. doi: 10.3788/CO.20191204.0731
引用本文: 蔡怀宇, 张玮茜, 陈晓冬, 刘珊珊, 韩晓艳. 眼科光学相干层析成像的图像处理方法[J]. 中国光学(中英文), 2019, 12(4): 731-740. doi: 10.3788/CO.20191204.0731
CAI Huai-yu, ZHANG Wei-qian, CHEN Xiao-dong, LIU Shan-shan, HAN Xiao-yan. Image processing method for ophthalmic optical coherence tomography[J]. Chinese Optics, 2019, 12(4): 731-740. doi: 10.3788/CO.20191204.0731
Citation: CAI Huai-yu, ZHANG Wei-qian, CHEN Xiao-dong, LIU Shan-shan, HAN Xiao-yan. Image processing method for ophthalmic optical coherence tomography[J]. Chinese Optics, 2019, 12(4): 731-740. doi: 10.3788/CO.20191204.0731

眼科光学相干层析成像的图像处理方法

基金项目: 

国家重点研发计划 2017YFC0109901

天津市自然科学基金项目 15JCQNJC14200

详细信息
    作者简介:

    蔡怀宇(1965—),女,湖南涟源人,博士,教授,硕士生导师,1991年、2000年于天津大学分别获得硕士、博士学位,主要从事信息光学、光电技术及仪器和图像处理等方面的研究。E-mail:hycai@tju.edu.cn

    张玮茜(1994—),女,山西太原人,天津大学精密仪器与光电子工程学院硕士研究生,2017年于山西大学获得学士学位,主要从事光学相干层析成像方面的研究。E-mail:wqzhang330@tju.edu.cn

  • 中图分类号: Q334

Image processing method for ophthalmic optical coherence tomography

Funds: 

National Key R&D Program of China 2017YFC0109901

Natural Science Foundation Project of Tianjin 15JCQNJC14200

More Information
  • 摘要: 光学相干层析成像(OCT)由于具有微米级高分辨率、非接触式成像以及瞬时性等特点,成为临床医学领域的研究热点,近些年得到迅速的发展,取得诸多进展与突破。本文简述了OCT技术在眼科医学中的各类应用及发展现状,分类讨论了OCT图像在空域和频域中的降噪方法,并重点总结了OCT眼前节和视网膜图像中各层组织的精确定位分层方法。其中深入分析了基于灰度值搜索方法、活动轮廓模型、图论和模式识别等分层方法,并针对现有分层方法的优缺点以及存在的问题展开深入讨论,提出相应的解决方法和优化方案。对眼科相关疾病的临床诊断指标分析评价,根据眼科临床医学需求和OCT图像处理现状,对未来OCT图像处理的发展趋势和发展水平做进一步讨论和分析。

     

  • 图 1  (a) 眼前节OCT图像;(b)视网膜OCT图像

    Figure 1.  (a)OCT of the anterior segment; (b)retinal OCT image

    图 2  各类视网膜病变的OCT图像(a)健康视网膜黄斑中心凹(b)黄斑裂洞(c)黄斑水肿(d)年龄相关黄斑变性(e)中央浆液脉络膜视网膜病(f)增殖性糖尿病视网膜病变

    Figure 2.  OCT images of various retinal diseases. (a)healthy macular fovea; (b)macular hole; (c) macular edema; (d)age-related macular degeneration; (e)central serous retinopathy; (f)proliferative diabetic retinopathy

    图 3  ZAP算法效果图

    Figure 3.  Image processing with ZAP algorithm

    图 4  算法效果图

    Figure 4.  Results obtained with proposed algorithm

    图 5  不同例健康视网膜RPE和ILM分层结果

    Figure 5.  RPE and ILM stratification results of healthy retinal in different cases

    图 6  Mujat等提出的基于活动轮廓的视网膜分层方法

    Figure 6.  Retinal stratification method based on active contour proposed by Mujat

    图 7  INL层分割互补梯度示意图

    Figure 7.  A diagram of a complementary gradient for dividing INL boundary

    图 8  使用SVM对不同病症视网膜OCT成像的分割结果. (a)健康眼; (b)年龄相关黄斑变性; (c)黄斑分离; (d)青光眼

    Figure 8.  Results of SVM segmentation for retinal OCT imaging of different diseases. (a)Healthy eyes; (b)age-related macular degeneration; (c)macular separation; (d)glaucoma

    表  1  OCT视网膜图像分层方法

    Table  1.   Methods of OCT retinal image segmentation

    来源 方法 分割层数 时间 描述
    Fernández, Fabritius等[14, 34] 基于最大灰度的搜索算法 2层 17~21 s 通过定位RPE和ILM测量视网膜厚度,视网膜疾病检测具有局限性
    Mujat,Ghorbel等[33-38] 活动轮廓模型 9层 5 s 局部收敛,分割结果高度依赖曲线的参数选择,且分割范围仅在初始点附近
    Yang等[39-41] 图论 9层 16 s 全局搜索,分层灵活,对噪声和图像退化十分敏感
    Fuller等[42-44] 模式识别 9层 10 min 受噪声影响较小,多用于三维分割,但耗时较长
    下载: 导出CSV

    表  2  OCT临床诊断指标与算法效果对比

    Table  2.   Clinical diagnostic index of OCT and comparison of image processing effect with different algorithms

    病灶名称 临床指标 检测方法 检测误差
    脉络膜视网膜病 中央凹或视网膜色素上皮细胞隆起、内界膜变形 ILM层定位及厚度分割[17] 误差<5 pixels
    年龄相关黄斑变性 视网膜色素上皮细胞脱落、脉络膜毛细血管断裂、色素上皮下脉络膜毛细血管光带增强、光感受器厚度增大 灰度值搜索法测量RPE层厚度[17] 误差>10 pixels
    图论法对RPE层厚度测量[46] 测量误差(1.430±0.20) μm
    通过模式识别对PRL层分割[47] 误差<6 pixels
    青光眼 视神经纤维层厚度变化;
    杯盘比CDR>0.5
    NFL层厚度测量[47]
    视神经乳头杯盘比测量[50]
    误差<6 pixels
    测量误差(7.27±5.4) μm
    下载: 导出CSV
  • [1] AMBROSINI P, RUIJTERS D, NIESSEN W J, et al.. Fully automatic and real-time catheter segmentation in X-ray fluoroscopy[C]. Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2017: 577-585.
    [2] RUBIN G D, KRUPINSKI E A. Tracking eye movements during CT interpretation:inferences of reader performance and clinical competency require clinically realistic procedures for unconstrained search[J]. Radiology, 2017, 283(3):920. doi: 10.1148/radiol.2017170067
    [3] PHAM C H, DUCOURNAU A, FABLET R, et al.. Brain MRI super-resolution using deep 3D convolutional networks[C]. Proceedings of the 14th International Symposium on Biomedical Imaging, IEEE, 2017: 197-200.
    [4] PAVLIN C J, SHERAR M D, FOSTER F S. Subsurface ultrasound microscopic imaging of the intact eye[J]. Ophthalmology, 1990, 97(2):244-250. doi: 10.1016/S0161-6420(90)32598-8
    [5] PAPANAS N, ZIEGLER D. Corneal confocal microscopy:recent progress in the evaluation of diabetic neuropathy[J]. Journal of Diabetes Investigation, 2015, 6(4):381-389. doi: 10.1111/jdi.12335
    [6] CHEN Y, HERZ P R, HSIUNG P L, et al.. Ultrahigh-resolution endoscopic optical coherence tomography for gastrointestinal imaging[J]. Proceedings of SPIE, 2005, 5690:4-10. doi: 10.1117/12.592609
    [7] 彭诚, 张芹芹, 吴晓静, 等.谱域OCT成像系统在口腔组织检测中的应用[J].光学 精密工程, 2011, 19(8):1931-1936. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201108030

    PENG CH, ZHANG Q Q, WU X J, et al.. Application of spectral domain optical coherence tomography to oral cavity tissue test[J]. Opt. Precision Eng., 2011, 19(8):1931-1936.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201108030
    [8] MEN J, HUANG Y Y, SOLANKI J, et al.. Optical coherence tomography for brain imaging and developmental biology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4):120-132. https://www.ncbi.nlm.nih.gov/pubmed/27721647
    [9] ADAMS D C, WANG Y, HARIRI L P, et al.. Advances in endoscopic optical coherence tomography catheter designs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3):210-221. doi: 10.1109/JSTQE.2015.2510295
    [10] 孙正, 郑兰.定量光声层析成像的研究进展[J].发光学报, 2017, 38(9):1222-1232. http://d.old.wanfangdata.com.cn/Periodical/fgxb201709016

    SUN ZH, ZHENG L. Review on progress of quantitative photoacoustic tomography[J]. Chinese Journal of Luminescence, 2017, 38(9):1222-1232.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201709016
    [11] HUANG D, SWANSON E A, LIN C P, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169
    [12] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639. doi: 10.1109/34.56205
    [13] 王亚强, 陈波.一种改进的各向异性扩散超声图像去噪算法[J].液晶与显示, 2015, 30(2):310-316. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201502020

    WANG Y Q, CHEN B. Improved anisotropic diffusion ultrasound image denoising algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2):310-316.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201502020
    [14] OZCAN A, BILENCA A, DESJARDINS A E, et al.. Speckle reduction in optical coherence tomography images using digital filtering[J]. Journal of the Optical Society of America A, 2007, 24(7):1901-1910. doi: 10.1364/JOSAA.24.001901
    [15] FERNÁNDEZ D C. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina[J]. IEEE Transactions on Medical Imaging, 2005, 24(8):929-945. doi: 10.1109/TMI.2005.848655
    [16] 孙延奎.光学相干层析医学图像处理及其应用[J].光学 精密工程, 2014, 22(4):1086-1104. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201404037

    SUN Y K. Medical image processing techniques based on optical coherence tomography and their applications[J]. Opt. Precision Eng., 2014, 22(4):1086-1104.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201404037
    [17] FABRITIUS T, MAKITA S, MIURA M, et al.. Automated segmentation of the macula by optical coherence tomography[J]. Optics Express, 2009, 17(18):15659-15669. doi: 10.1364/OE.17.015659
    [18] 王立科, 张佳莹, 田磊, 等.基于光学相干层析气冲印压技术研究角膜生物力学特性[J].光学 精密工程, 2015, 23(2):325-333. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201502002

    WANG L K, ZHANG J Y, TIAN L, et al.. OCT based air jet indentation for corneal biomechanical assessment[J]. Opt. Precision Eng., 2015, 23(2):325-333.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201502002
    [19] IZATT J A, HEE M R, SWANSON E A, et al.. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography[J]. Archives of Ophthalmology, 1994, 112(12):1584-1589. doi: 10.1001/archopht.1994.01090240090031
    [20] HEE M R, IZATT J A, SWANSON E A, et al.. Optical coherence tomography of the human retina[J]. Archives of Ophthalmology, 1995, 113(3):325-332. doi: 10.1001/archopht.1995.01100030081025
    [21] SCHUMAN J S, PEDUT-KLOIZMAN T, HERTZMARK E, et al.. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography[J]. Ophthalmology, 1996, 103(11):1889-1898. doi: 10.1016/S0161-6420(96)30410-7
    [22] STAURENGHI G, SADDA S, CHAKRAVARTHY U, et al.. Proposed lexicon for an atomic landmarks in normal posterior segment spectral-domain optical coherence tomography:The IN OCT consensus[J]. Ophthalmology, 2014, 121(8):1572-1578. doi: 10.1016/j.ophtha.2014.02.023
    [23] AREVALO J F. Retinal Angiography and Optical Coherence Tomography[M]. New York:Springer, 2009:239-251.
    [24] SCHMITT J M, XIANG S H, YUNG K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1):95-105. doi: 10.1117/1.429925
    [25] 高用贺, 李跃杰, 王立伟, 等.光学相干层析成像的视网膜层状结构自动分割[J].中国医疗器械杂志, 2014, 38(2):94-97, 101. doi: 10.3969/j.issn.1671-7104.2014.02.004

    GAO Y H, LI Y J, WANG L W, et al.. Automated segmentation of retina layer structures on optical coherence tomography[J]. Chinese Journal of Medical Instrumentation, 2014, 38(2):94-97, 101.(in Chinese) doi: 10.3969/j.issn.1671-7104.2014.02.004
    [26] ISHIKAWA H, STEIN D M, WOLLSTEIN G, et al.. Macular segmentation with optical coherence tomography[J]. Investigative Ophthalmology and Visual Science, 2005, 46(6):2012-2017. doi: 10.1167/iovs.04-0335
    [27] GILBOA G, SOCHEN N, ZEEVI Y Y. Image enhancement and denoising by complex diffusion processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8):1020-1036. doi: 10.1109/TPAMI.2004.47
    [28] 王健博, 杨航, 吴笑天.结合图像分割的改进导引滤波[J].液晶与显示, 2017, 32(5):380-386. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201705009

    WANG J B, YANG H, WU X T. Segmentation based improved guided filter[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(5):380-386.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201705009
    [29] CHITCHIAN S, FIDDY M A, FRIED N M. Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform[J]. Journal of Biomedical Optics, 2009, 14(1):014031. doi: 10.1117/1.3081543
    [30] 舒鹏, 孙延奎, 田小林.采用双树复小波和混合概率模型的光学相干层析图像去噪[J].应用科学学报, 2011, 29(5):467-472. doi: 10.3969/j.issn.0255-8297.2011.05.005

    SHU P, SUN, Y K, TIAN X L. Denoising of optical coherence tomography image using dual-tree complex wavelet transform and mixed probability model[J]. Journal of Applied Sciences, 29(5):467-472.(in Chinese) doi: 10.3969/j.issn.0255-8297.2011.05.005
    [31] YUNG K M, LEE S L, SCHMITT J M. Phase-domain processing of optical coherence tomography images[J]. Journal of Biomedical Optics, 1999, 4(1):125-136. doi: 10.1117/1.429942
    [32] PIRCHER M, GOTZINGER E, LEITGEB R, et al.. Speckle reduction in optical coherence tomography by frequency compounding[J]. Journal of Biomedical Optics, 2003, 8(3):565-569. doi: 10.1117/1.1578087
    [33] PIRCHER M, GOTZINGER E, LEITGEB R, et al.. Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography[J]. Optics Express, 2003, 11(18):2190-2197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001472050
    [34] LIN L F, JU Y. Automatic extraction of the anterior chamber contour in OCT images[C]. Proceedings of the 2nd International Symposium on Information Science and Engineering, IEEE, 2009.
    [35] EICHEL J A, MISHRA A K, FIEGUTH P, et al.. A novel algorithm for extraction of the layers of the cornea[C]. Proceedings of the 2009 Canadian Conference on Computer and Robot Vision, IEEE, 2009: 313-320.
    [36] LAROCCA F, CHIU S J, MCNABB R P, et al.. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming[J]. Biomedical Optics Express, 2011, 2(6):1524-1538. doi: 10.1364/BOE.2.001524
    [37] 贺琪欲, 李中梁, 王向朝, 等.基于光学相干层析成像的视网膜图像自动分层方法[J].光学学报, 2016, 36(10):1011003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201610009

    HE Q Y, LI ZH L, WANG X CH, et al.. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optical Sinica, 2016, 36(10):1011003.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201610009
    [38] KOOZEKANANI D, BOYER K L, ROBERTS C. Tracking the optic nervehead in OCT video using dual eigenspaces and an adaptive vascular distribution model[J]. IEEE Transactions on Medical Imaging, 2003, 22(12):1519-1536. doi: 10.1109/TMI.2003.817753
    [39] FERNÁNDEZ D C, SALINAS H M, PULIAFITO C A. Automated detection of retinal layer structures on optical coherence tomography images[J]. Optics Express, 2005, 13(25):10200-10216. doi: 10.1364/OPEX.13.010200
    [40] KASS M, WITKIN A, TERZOPOULOS D. Snakes:active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331. doi: 10.1007/BF00133570
    [41] MUJAT M, CHAN R C, CENSE B, et al.. Retinal nerve fiber layer thickness map determined from optical coherence tomography images[J]. Optics Express, 2005, 13(23):9480-9491. doi: 10.1364/OPEX.13.009480
    [42] MISHRA A, WONG A, BIZHEVA K, et al.. Intra-retinal layer segmentation in optical coherence tomography images[J]. Optics Express, 2009, 17(26):23719-23728. doi: 10.1364/OE.17.023719
    [43] GHORBEL I, ROSSANT F, BLOCH I, et al.. Automated segmentation of macular layers in OCT images and quantitative evaluation of performances[J]. Pattern Recognition, 2011, 44(8):1590-1603. doi: 10.1016/j.patcog.2011.01.012
    [44] GARVIN M K, ABRÁMOFF M D, WU X D, et al.. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2009, 28(9):1436-1447. doi: 10.1109/TMI.2009.2016958
    [45] YANG Q, REISMAN C A, WANG ZH G, et al.. Automated layer segmentation of macular OCT images using dual-scale gradient information[J]. Optics Express, 2010, 18(20):21293-21307. doi: 10.1364/OE.18.021293
    [46] DUAN J M, TENCH C, GOTTLOB I, et al.. Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance[J]. Pattern Recognition, 2017, 72:158-175. doi: 10.1016/j.patcog.2017.07.004
    [47] FULLER A R, ZAWADZKI R J, CHOI S, et al.. Segmentation of three-dimensional retinal image data[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6):1719-1726. doi: 10.1109/TVCG.2007.70590
    [48] SZKULMOWSKI M, WOJTKOWSKI M, SIKORSKI B, et al.. Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies[J]. Journal of Biomedical Optics, 2007, 12(4):041207. doi: 10.1117/1.2771569
    [49] LANG A, CARASS A, HAUSER M, et al.. Retinal layer segmentation of macular OCT images using boundary classification[J]. Biomedical Optics Express, 2013, 4(7):1133-1152. doi: 10.1364/BOE.4.001133
    [50] YU K, SHI F, GAO E T, et al.. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation[J]. Biomedical Optics Express, 2018, 9(3):962-983. doi: 10.1364/BOE.9.000962
    [51] SYC S B, WARNER C V, SAIDHA S, et al.. Cup to disc ratio by optical coherence tomography is abnormal in multiple sclerosis[J]. Journal of the Neurological Sciences, 2011, 302(1-2):19-24. doi: 10.1016/j.jns.2010.12.011
    [52] 肖志涛, 娄世良, 吴骏, 等.立体成像眼底相机光学系统设计[J].光学 精密工程, 2018, 26(5):1054-1060. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201805006

    XIAO ZH T, LOU SH L, WU J, et al.. Design of optical system for stereo imaging fundus camera[J]. Opt. Precision Eng., 2018, 26(5):1054-1060.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201805006
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  4612
  • HTML全文浏览量:  1778
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 修回日期:  2018-12-28
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回