[1] |
GÅSVIK K J. Optical Metrology[M]. 3rd ed. Hoboken:John Wiley & Sons, 2002.
|
[2] |
郑文军.介晶双丙烯酸酯在全息干涉光场中的指向性交联[J].液晶与显示, 2010, 25(5):611-616. doi: 10.3969/j.issn.1007-2780.2010.05.001ZHENG W J. Orientational crosslinking of mesogenic diacrylates in holographic interference field[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(5):611-616.(in Chinese) doi: 10.3969/j.issn.1007-2780.2010.05.001
|
[3] |
范应娟, 袁桃利, 张麦丽.偏光干涉法检测LCD间隔的均匀性[J].液晶与显示, 2015, 30(3):416-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201503008FAN Y J, YUAN T L, ZHANG M L.Testing uniformity of spacers in LCD with the way of polarization interference[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(3):416-420.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201503008
|
[4] |
MALACARA D, SERVÍN M, MALACARA Z. Interferogram Analysis for Optical Testing[M]. 2nd ed. Florida, USA:CRC Press, 2005.
|
[5] |
CHENG ZH T, LIU D. Fast and accurate wavefront reconstruction in two-frame phase-shifting interferometry with unknown phase step[J]. Optics Letters, 2018, 43(13):3033-3036. doi: 10.1364/OL.43.003033
|
[6] |
TIAN CH, LIU SH CH. Phase retrieval in two-shot phase-shifting interferometry based on phase shift estimation in a local mask[J]. Optics Express, 2017, 25(18):21673-21683. doi: 10.1364/OE.25.021673
|
[7] |
TIAN CH, YANG Y Y, WEI T, et al.. Demodulation of a single-image interferogram using a Zernike-polynomial-based phase-fitting technique with a differential evolution algorithm[J]. Optics Letters, 2011, 36(12):2318-2320. doi: 10.1364/OL.36.002318
|
[8] |
LIU F W, WANG J, WU Y Q, et al.. Simultaneous extraction of phase and phase shift from two interferograms using Lissajous figure and ellipse fitting technology with Hilbert-Huang prefiltering[J]. Journal of Optics, 2016, 18(10):105604. doi: 10.1088/2040-8978/18/10/105604
|
[9] |
QIAN K M. Windowed Fringe Pattern Analysis[M]. Bellingham, Washington, USA:SPIE Press, 2013.
|
[10] |
SERVIN M, MARROQUIN J L, CUEVAS F J. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique[J]. Applied Optics, 1997, 36(19):4540-4548. doi: 10.1364/AO.36.004540
|
[11] |
刘东, 杨甬英, 田超, 等.高精度单幅闭合条纹干涉图相位重构技术[J].中国激光, 2010, 37(2):531-536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201002039LIU D, YANG Y Y, TIAN CH, et al..Study on phase retrieval from single close fringe pattern with high precision[J]. Chinese Journal of Lasers, 2010, 37(2):531-536.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201002039
|
[12] |
TIAN CH, YANG Y Y, LIU D, et al.. Demodulation of a single complex fringe interferogram with a path-independent regularized phase-tracking technique[J]. Applied Optics, 2010, 49(2):170-179. doi: 10.1364/AO.49.000170
|
[13] |
LI K, QIAN K M. Improved generalized regularized phase tracker for demodulation of a single fringe pattern[J]. Optics Express, 2013, 21(20):24385-24397. doi: 10.1364/OE.21.024385
|
[14] |
LI K, QIAN K M. A generalized regularized phase tracker for demodulation of a single fringe pattern[J]. Optics Express, 2012, 20(11):12579-12592. doi: 10.1364/OE.20.012579
|
[15] |
HE A H, DEEPAN B, QUAN C. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe[J]. Applied Optics, 2017, 56(25):7217-7224. doi: 10.1364/AO.56.007217
|
[16] |
DEEPAN B, QUAN CH G, TAY C J. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker[J]. Optical Engineering, 2016, 55(12):121707. doi: 10.1117/1.OE.55.12.121707
|
[17] |
DEEPAN B, QUAN C, TAY C J. A derivative based simplified phase tracker for a single fringe pattern demodulation[J]. Optics and Lasers in Engineering, 2016, 83:83-89. doi: 10.1016/j.optlaseng.2016.03.012
|
[18] |
QUIROGA J A, SERVIN M. Isotropic n-dimensional fringe pattern normalization[J]. Optics Communications, 2003, 224(4-6):221-227. doi: 10.1016/j.optcom.2003.07.014
|
[19] |
QUIROGA J A, GÓMEZ-PEDRERO J A, GARCÍA-BOTELLA Á. Algorithm for fringe pattern normalization[J]. Optics Communications, 2001, 197(1-3):43-51. doi: 10.1016/S0030-4018(01)01440-7
|
[20] |
BERNINI M B, FEDERICO A, KAUFMANN G H. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform[J]. Applied Optics, 2009, 48(36):6862-6869. doi: 10.1364/AO.48.006862
|
[21] |
TIEN C L, JYU S S, YANG H M. A method for fringe normalization by Zernike polynomial[J]. Optical Review, 2009, 16(2):173-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c06bcbb19181532f4aae8fd8000e9f8a
|
[22] |
OCHOA N A, SILVA-MORENO A. Normalization and noise-reduction algorithm for fringe patterns[J]. Optics Communications, 2007, 270(2):161-168. doi: 10.1016/j.optcom.2006.09.062
|
[23] |
STASZEK K, BOGUSZ M. Simple fringe pattern normalization algorithm[J]. IFAC Proceedings Volumes, 2012, 45(7):353-356. doi: 10.3182/20120523-3-CZ-3015.00067
|
[24] |
SERVIN M, MARROQUIN J L, CUEVAS F J. Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms[J]. Journal of the Optical Society of America A, 2001, 18(3):689-695. doi: 10.1364/JOSAA.18.000689
|
[25] |
LEGARDA-SAENZ R, RIVERA M. Fast half-quadratic regularized phase tracking for nonnormalized fringe patterns[J]. Journal of the Optical Society of America A, 2006, 23(11):2724-2731. doi: 10.1364/JOSAA.23.002724
|
[26] |
LEGARDA-SÁENZ R, OSTEN W, JUPTNER W. Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns[J]. Applied Optics, 2002, 41(26):5519-5526. doi: 10.1364/AO.41.005519
|
[27] |
TIAN CH, YANG Y Y, ZHANG SH N, et al.. Regularized frequency-stabilizing method for single closed-fringe interferogram demodulation[J]. Optics Letters, 2010, 35(11):1837-1839. doi: 10.1364/OL.35.001837
|
[28] |
QUIROGA J A, VILLA J, CRESPO D. Automatic techniques for evaluation of moire deflectograms[J]. Proceedings of SPIE, 1999, 3744:328-334. doi: 10.1117/12.357730
|
[29] |
VILLA J, SERVIN M. Robust profilometer for the measurement of 3-D object shapes based on a regularized phase tracker[J]. Optics and Lasers in Engineering, 1999, 31(4):279-288. doi: 10.1016/S0143-8166(99)00023-8
|
[30] |
SERVIN M, CUEVAS F J, MALACARA D, et al.. Direct ray aberration estimation in Hartmanngrams by use of a regularized phase-tracking system[J]. Applied Optics, 1999, 38(13):2862-2869. doi: 10.1364/AO.38.002862
|
[31] |
VILLA J, QUIROGA J A, SERVÍN M. Improved regularized phase-tracking technique for the processing of squared-grating deflectograms[J]. Applied Optics, 2000, 39(4):502-508. doi: 10.1364/AO.39.000502
|
[32] |
RAMESH K, KASIMAYAN T, NEETHI SIMON B. Digital photoelasticity A comprehensive review[J]. The Journal of Strain Analysis for Engineering Design, 2011, 46(4):245-266. doi: 10.1177/0309324711401501
|
[33] |
PATTERSON E A. Digital photoelasticity:principles, practice and potential:measurements lecture[J]. Strain, 2002, 38(1):27-39. doi: 10.1046/j.0039-2103.2002.00004.x
|
[34] |
QUIROGA J A, GONZALEZ-CANO A. Application of regularization methods to the analysis of photoelastic fringe patterns[J]. Proceedings of SPIE, 1999, 3744:318-327. doi: 10.1117/12.357729
|
[35] |
SIEGMANN P, DÍAZ-GARRIDO F, PATTERSON E A. Robust approach to regularize an isochromatic fringe map[J]. Applied Optics, 2009, 48(22):E24-E34. doi: 10.1364/AO.48.000E24
|
[36] |
SERVIN M, QUIROGA J A. Isochromatics demodulation from a single image using the regularized phase tracking technique[J]. Journal of Modern Optics, 2001, 48(3):521-531. doi: 10.1080/09500340108230929
|
[37] |
QUIROGA J A, SERVIN M, MARROQUIN J L. Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image[J]. Measurement Science and Technology, 2002, 13(1):132-140. doi: 10.1088/0957-0233/13/1/317
|
[38] |
QUIROGA J A, GONZÁLEZ-CANO A. Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique[J]. Applied Optics, 2000, 39(17):2931-2940. doi: 10.1364/AO.39.002931
|