Design of laser beam expansion systems with high precision and continuous variable ratios
-
摘要: 为了实现对激光束的准直变倍扩束,提出了一种基于液晶空间光调制器(Liquid Crystal Spatial Light Modulator,LC-SLM)实现数字变焦透镜的方法,并利用这种方法搭建了基于LC-SLM的变焦扩束系统。首先根据透镜相位变换原理和LC-SLM的相位调制特性由计算机编程生成不同焦距的数字透镜相位调制图,实现不同焦距的数字透镜功能,通过凸透镜对平行光束的汇聚作用,验证该功能的有效性,平均误差为0.95%。上述结果说明LC-SLM能够实现变焦透镜功能。接下来,通过与汇聚透镜组合实现对激光束的连续变倍率准直扩束。该系统的扩束倍率为2×~5×,均方根误差为0.539 7 mm,峰谷值为0.99 mm。实验结果表明,本文提出的方法可以实现对激光束不同倍率的扩束且扩束比连续可变。该系统解决了传统变焦系统无法满足多变的激光扩束需求的问题,且结构简单,精度高,在激光扩束应用方面具有广泛应用前景。Abstract: In order to achieve collimation and zoom expansion in laser beams, a method of creating digital zoom lenses based on LC-SLM(Liquid Crystal Spatial Light Modulator) is proposed and a zoom beam expansion system based on LC-SLM is built using this method. Firstly, according to the principles of lens phase transformation and the phase modulation characteristics of LC-SLM, the phase modulation maps of digital lenses with different focal lengths are generated using computer programming to obtain the function of digital lenses with different focal lengths. The effectiveness of the function is verified with the convergence of convex lenses to parallel beams. The average error is 0.95%. It can be concluded that LC-SLM can achieve the function of digital lenses with different focal lengths and realize a zoom lens' function. A 2×~5× continuous magnification collimation of the laser beam is then attained by combining it with the converging lens. The beam expansion error is 0.539 7 mm, and the peak valley value is 0.99 mm. The experimental results show that the method proposed in this paper can be used to expand the laser beam to different multiples and the beam expansion ratio can be varied continuously. This system solves the problem that the traditional zoom systems cannot meet the changing demands of laser beam expansion. It has a simple structure with high precision and has great significance in the applications of laser beam expansion.
-
表 1 基于LC-SLM变焦透镜焦距理论值与测量值
Table 1. Theoretical values and measurement values of focal length of zoom lens based on LC-SLM
fLC-SLM理论值/mm 200 300 400 500 600 700 800 900 1000 fLC-SLM测量值/mm 200 300 405 491 604 708 812 910 989 表 2 经基于LC-SLM变倍率激光扩束系统扩束后的光斑直径实测值与理论值数据
Table 2. Measured values and theoretical values of spot diameter by using magnification laser beam expanding system based on LC-SLM
扩束倍率M fLC-SLM/mm 理论光斑直径/mm 实测光斑直径/mm 2× -750 12 12.32 3× -500 18 17.05 4× -375 24 24 5× -300 30 30.4 -
[1] 向劲松.采用光纤耦合及光放大接收的星地光通信系统及关键技术[D].成都: 电子科技大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10614-2007051053.htmXIANG J X. Fiber coupled and optically preamplified satellite-to-ground bidirectional laser communication system and its key technologies[D]. Chengdu: University of Electronic Science and Technology, 2007.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10614-2007051053.htm [2] 王子余.几何光学和光学设计[M].杭州:浙江大学出版社, 1989.WANG Z Y. Geometrical Optics and Optical Design[M]. Hangzhou:Zhejiang University Press, 1989.(in Chinese) [3] 孔祥蕾, 郝沛明.变焦扩束系统的光学设计[J].应用光学, 2001, 22(5):7-11. doi: 10.3969/j.issn.1002-2082.2001.05.003KONG X L, HAO P M. Optical design of zoom beam expander system[J]. Applied Optics, 2001, 22 (5):7-11.(in Chinese) doi: 10.3969/j.issn.1002-2082.2001.05.003 [4] 叶井飞, 高志山, 叶海水, 等.大变倍比近红外无焦激光扩束系统[J].光学 精密工程, 2013, 21(5):1129-1136. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305006YE J F, GAO ZH SH, YE H SH, et al.. Near-infrared afocal kaser bean expanding system with large zoom ratio[J]. Opt. Precision Eng., 2013, 21(5): 1129-1136.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305006 [5] 单娟, 张鹏, 付玉虎.激光变焦扩束光学系统设计[J].光学与光电技术, 2013, 11(4):72-76. http://d.old.wanfangdata.com.cn/Periodical/ccgxjmjxxyxb201004011SHAN J, ZHANG P, FU Y H. Design of optical zooming system used for collimating laser beams[J]. Optics & Optoelectronic Technology, 2013, 11 (4):72-76.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ccgxjmjxxyxb201004011 [6] 卢政伟, 邵帅, 马亚坤.复合式无遮拦激光扩束器的设计[J].中国光学, 2018, 11(4):582-589. http://www.chineseoptics.net.cn/CN/abstract/abstract9478.shtmlLU ZH W, SHAO SH, MA Y K. Design of a composite laser beam expander without obscuration[J]. China Optics, 2018, 11(4):582-589.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9478.shtml [7] 陈魏华.基于空间光调制器的主动光学变焦系统的初探[D].合肥: 安徽大学, 2012: 1-56. http://cdmd.cnki.com.cn/Article/CDMD-10357-1012395719.htmCHEN W H. Preliminary research of active optical zoom system based on spatial light modulator[D]. Hefei: Anhui University, 2012: 1-56.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10357-1012395719.htm [8] 张颖, 赵海博.带有补偿器的液晶相位可变延迟器[J].光学 精密工程, 2009, 17(8):1798-1803. doi: 10.3321/j.issn:1004-924X.2009.08.003ZHANG Y, ZHAO H B. Liquid crystal variable retarder attached with compensator[J]. Opt. Precision Eng., 2009, 17(8):1798-1803.(in Chinese) doi: 10.3321/j.issn:1004-924X.2009.08.003 [9] 曹召良, 李小平, 宣丽, 等.液晶自适应光学的研究进展[J].中国光学, 2012, 5(1):12-19. doi: 10.3969/j.issn.2095-1531.2012.01.002CAO ZH L, LI X P, XUAN L, et al.. Recent progress in liquid crystal adaptive optical techniques[J]. China Optics, 2012, 5(1):12-19.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.01.002 [10] 胡立发, 彭增辉, 王启东, 等.纯位相液晶调制器的响应特性计算[J].液晶与显示, 2017, 32(3):182-189. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703004HU L F, PENG Z H, WANG Q D, et al.. Calculation of electro-optical characteristics of phase-only liquid crystal modulator[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):182-189.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703004 [11] 李小平, 胡五胜, 于洪丽, 等.基于液晶空间光调制器的相位差波前探测技术定量研究[J].液晶与显示, 2017, 32(3):234-239. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703011LI X P, HU W SH, YU H L, et al.. Quantitative analysis on phase diversity technique based on liquid crystal spatial light modulator[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):234-239.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703011 [12] 杜升平, 傅承毓, 黄永梅, 等.一种液晶相位调制特性的测量方法[J].光子学报, 2017, 46(1):93-100. http://d.old.wanfangdata.com.cn/Periodical/gzxb201701012DU SH P, FU CH Y, HUANG Y M, et al.. A method of measure the liquid-crystal's modulating characteristic[J]. Acta Photonica Sinica, 2017, 46 (1): 93-100.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201701012 [13] 刘春梅.基于LCOS光学变焦系统研究[D].合肥: 安徽大学, 2013: 1-29. http://cdmd.cnki.com.cn/Article/CDMD-10357-1013258294.htmLIU CH M. LCOS-based optical zoom system research[D]. Hefei: Anhui University, 2013: 1-29.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10357-1013258294.htm [14] BUCKLEY E. Holographic display devices: US Patent, US2009/0207466[P]. 2009-08-20. [15] REICHERTER M, HAIST T, WAGEMANN E U, et al.. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Optics Letters, 1999, 24(9):608-610. doi: 10.1364/OL.24.000608 [16] ZWICK S, SCHAUB C, HAIST T, et al.. Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping[J]. Optics Express, 2010, 18(19):19941-19950. doi: 10.1364/OE.18.019941 [17] 李颖奎, 齐冀, 张洁, 等.基于液晶空间光调制器的变倍率激光扩束技术研究[J].液晶与显示, 2018, 33(9):764-771. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007LI Y K, QI J, ZHANG J, et al.. Laser beam expanding technology based on liquid crystal spatial light modulator[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9):764-771.(in Chinese http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007