Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission
-
摘要: 地面引力波探测由于受到地表振动、重力梯度等噪声以及试验尺度的限制,探测频段被限制在10Hz以上,而对于更大特征质量和尺度的波源,探测频段主要在中低频段(0.1 mHz~1 Hz)。因此,为避免地面干扰,需要在空间进行探测。由于引力波信号微弱,探测精度极高,针对空间引力波探测,国际上提出了以LISA为代表的空间引力波探测计划,国内中国科学院也提出了太极计划。然而,国内外的引力波探测卫星计划,对卫星的技术指标、设计复杂性和成本均提出了极高要求,短期之内难以实现。针对这一现实情况,本文参考LISA pathfinder的设计思路,设计一颗近地低成本商业卫星,针对引力波探测关键技术的验证需求,进行卫星任务需求分析及结构、热控、姿态控制等关键技术分析,提出商业化的低成本技术验证初步设想,希望能对空间引力波探测卫星总体设计提供一定借鉴。Abstract: Detecting gravitational waves on ground was limited by the noises such as surface vibration, gravity gradient and the test scale. The detection frequency band is limited to more than 10 Hz while the detection frequency band is mainly in the middle and low frequency band(0.1 mHz~1 Hz) for wave sources with larger feature quality and scale. So in order to avoid ground interference, detection from space is inevitably necessary. As gravitational wave signals are extremely weak and their required detection accuracy is extremely high, space gravitational wave detection projects represented by LISA was proposed by ESA and Taiji was proposed by the Chinese Academy of Sciences. However, both domestic and foreign proposed projects had extremely high requirements for satellite technical indicators, design complexity and cost. They were hard to achieve in the short term. This paper refers to the design of LISA pathfinder, designs a near-field low-cost commercial satellite for the verification requirements of gravitational wave detection key technologies, analyzes the satellite mission design and proposes ways to verify its structure, thermal and attitude control technologies. In this paper, a preliminary idea of commercial low-cost technology verification was proposed to provide reference for the design of space gravitational wave detection satellites.
-
表 1 大气阻力分析
Table 1. Analysis of atmospheric resistance
轨道高度/km 500 550 600 650 700 大气密度平均值/(g·cm-3) 9.21×10-17 3.79×10-17 1.75×10-17 9.18×10-18 5.50×10-18 速度/(km·s-1) 7.613 7.585 7.558 7.531 7.504 大气阻力/(N·Hz-1/2) 5.87×10-6 2.40×10-6 1.10×10-6 5.73×10-7 3.41×10-7 对应加速度/(m/s2/Hz1/2) 3.91×10-8 1.60×10-8 7.33×10-9 3.82×10-9 2.27×10-9 -
[1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al.. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102. doi: 10.1103/PhysRevLett.116.061102 [2] WEINBERG S. Gravitation and Cosmology:Principles and Applications of the General Theory of Relativity[M]. New York:Wiley, 1972. [3] MISNER C W, THORNE K S, WHEELER J A. Gravitation[M]. San Francisco:Freeman and Company, 1973. [4] SALLUSTI M, GATH P, WEISE D, et al.. LISA system design highlights[J]. Classical and Quantum Gravity, 2009, 26(9):094015. doi: 10.1088/0264-9381/26/9/094015 [5] 龚雪飞, 徐生年, 袁业飞, 等.空间激光干涉引力波探测与早期宇宙结构形成[J].天文学进展, 2015, 33(1):59-83. doi: 10.3969/j.issn.1000-8349.2015.01.04GONG X F, XU SH N, YUAN Y F, et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Pogress in Astronomy, 2015, 33(1):59-83.(in Chinese) doi: 10.3969/j.issn.1000-8349.2015.01.04 [6] JENNRICH O, BINETRUY P, COLPI M, et al.. NGO(New Gravitational wave Observatory) assessment study report(Yellow Book)[R]. Cosmology and Extra-galactic Astrophysics, 2012. [7] NI W T. ASTROD-GW:Overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1):1341004. doi: 10.1142/S0218271813410046 [8] BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity, 2005, 22(10):S339-S346. doi: 10.1088/0264-9381/22/10/027 [9] KAWAMURA S, NAKAMURA T, SETO N. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space[J]. Physical Review Letters, 2001, 87(22):221103. doi: 10.1103/PhysRevLett.87.221103 [10] 万小波, 张晓敏, 黎明.天琴计划轨道构型长期漂移特性分析[J].中国空间科学技术, 2017, 37(3):110-116. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014WAN X B, ZHANG X M, LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin mission[J]. Chinese Space Science and Technology, 2017, 37(3):110-116.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014 [11] 胡戈锋, 薛力军.高性价比商业微小卫星研制探索[J].国际太空, 2018(1):39-42. doi: 10.3969/j.issn.1009-2366.2018.01.010HU G F, XUE L J. Research of cost-effective commercial micro satellites[J]. Space International, 2018(1):39-42.(in Chinese) doi: 10.3969/j.issn.1009-2366.2018.01.010 [12] 罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004 [13] 王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtmlWANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml [14] GATH P, SCHULTE H R, WEISE D. Challenges in the measurement and data-processing chain of the LISA mission[J]. Space Science Reviews, 2010, 151(1-3):61-73. doi: 10.1007/s11214-009-9604-8 [15] SCHLEICHER A, ZIEGLER T, SCHUBERT R, et al.. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal, 2018, 10(4):471-485. doi: 10.1007/s12567-018-0204-x [16] GIULICCHI L, WU S F, FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology, 2013, 24(1):283-294. doi: 10.1016/j.ast.2011.12.002 [17] PAITA L, CESARI U, NANIA F, et al.. Alta FT-150: the thruster for LISA pathfinder and LISA/NGO missions[C]. Proceedings of the 9th LISA Symposium, Astronomical Society of the Pacific, 2012: 245-249.