留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极不对称性对惯性传感器性能损失的研究

王少鑫 齐克奇 王玉坤 王智 陈立恒

王少鑫, 齐克奇, 王玉坤, 王智, 陈立恒. 电极不对称性对惯性传感器性能损失的研究[J]. 中国光学(中英文), 2019, 12(3): 455-462. doi: 10.3788/CO.20191203.0455
引用本文: 王少鑫, 齐克奇, 王玉坤, 王智, 陈立恒. 电极不对称性对惯性传感器性能损失的研究[J]. 中国光学(中英文), 2019, 12(3): 455-462. doi: 10.3788/CO.20191203.0455
WANG Shao-xin, QI Ke-qi, WANG Yu-kun, WANG Zhi, CHEN Li-heng. Study on loss of performance in inertial sensors due to electrode asymmetry[J]. Chinese Optics, 2019, 12(3): 455-462. doi: 10.3788/CO.20191203.0455
Citation: WANG Shao-xin, QI Ke-qi, WANG Yu-kun, WANG Zhi, CHEN Li-heng. Study on loss of performance in inertial sensors due to electrode asymmetry[J]. Chinese Optics, 2019, 12(3): 455-462. doi: 10.3788/CO.20191203.0455

电极不对称性对惯性传感器性能损失的研究

基金项目: 

中国科学院"空间科学(二期)"战略性先导科技专项"空间科学背景型号项目" XDA15020704

详细信息
    作者简介:

    王少鑫(1985-), 男, 内蒙古巴彦淖尔人, 博士研究生, 助理研究员, 2009年于西南交通大学获得学士学位, 2013年于浙江大学获得硕士学位, 主要从事空间惯性传感器相关设计方面的研究。E-mail:wangshaoxin@ciomp.ac.cn

    齐克奇(1985-), 男, 内蒙古锡林郭勒人, 博士研究生, 助理研究员, 2007年、2009年于吉林大学分别获得学士、硕士学位, 主要从事空间惯性传感器相关设计方面的研究。E-mail:qikeqi1985@126.com

  • 中图分类号: TH73;TH762

Study on loss of performance in inertial sensors due to electrode asymmetry

Funds: 

Leading Special Project of Chinese Academy of Sciences XDA15020704

More Information
  • 摘要: 惯性传感器被广泛应用于地球重力场反演、等效原理验证等科学实验中,用来测量空间非保守力作用引起的微小加速度扰动以实现航天器的无拖曳控制。目前国内外正在大力开展的空间引力波探测计划中,惯性传感器作为核心测量载荷主要用于屏蔽外界噪声扰动,并通过静电控制和微推进器的测量及补偿实现测试质量在空间敏感轴方向自由漂浮运动。本文以静电悬浮式惯性传感器电容结构为基础,结合系统静电力驱动控制的工作原理,并以实际的加工条件为依据,对电极不对称性这一系统自身的误差来源展开分析,通过对各种不对称情况的系统性能影响比较分析,得到电极不对称性对于系统性能,特别是量程损失的影响显著。在此基础上结合实际加工条件得出将加工线度尺寸误差控制在10 μm以内,面积不对称性控制在1%~2%之间的基本要求,以降低其对系统测量范围的限制,进而提高科学目标。

     

  • 图 1  加速度测量原理示意图(单自由度)

    Figure 1.  Schematic diagram of acceleration measurement(single degree of freedom)

    图 2  差分式电容传感原理(单自由度)

    Figure 2.  Principle of differential capacitance sensing measurement (single degree of freedom)

    图 3  TM平动静电力控制原理

    Figure 3.  Principle of TM translation electrostatic control

    图 4  TM转动静电力控制原理

    Figure 4.  Principle of TM rotation electrostatic control

    图 5  惯性传感器电极分布

    Figure 5.  Inertial sensor electrode distribution

    图 6  电极不对称性结构位置形式

    Figure 6.  Electrode asymmetry structure arrangement form

    图 7  反馈电压偏值系数与电极面积比值关系

    Figure 7.  Relation between feedback voltage offset coefficient and electrode area ratio

    图 8  中心距误差与反馈电压偏值系数关系

    Figure 8.  Relation between feedback voltage coefficient and centre distance error

    图 9  加工完成后的电极件和TM

    Figure 9.  Finished electrode and TM

  • [1] LAUBEN D, ALLEN G, BENCZE W, et al.. Electrostatic sensing and forcing electronics performance for the LISA Pathfinder gravitational reference sensor[J]. AIP Conference Proceedings, 2006, 873:576-582. doi: 10.1063/1.2405102
    [2] ZOELLNER A, HULTGREN E, SUN K X. Integrated differential optical shadow sensor for modular gravitational reference sensor[C]. Proceedings of the 8th International LISA Symposium, Stanford University, USA, 2013.
    [3] SUMNER T J. The STEP and GAUGE missions[J]. Space Science Reviews, 2009, 148(1-4):475-487. doi: 10.1007/s11214-009-9558-x
    [4] SPEAKE C C, ASTON S M. An interferometric sensor for satellite drag-free control[J]. Classical and Quantum Gravity, 2005, 22(10):S269-S277. doi: 10.1088/0264-9381/22/10/019
    [5] 罗子人, 钟敏, 边星, 等.地球重力场空间探测:回顾与展望[J].力学进展, 2014, 44:201408. doi: 10.6052/1000-0992-14-047

    LUO Z R, ZHONG M, BIAN X, et al.. Mapping earth's gravity in space:review and future perspective[J]. Advances in Mechanics, 2014, 44: 201408.(in Chinese) doi: 10.6052/1000-0992-14-047
    [6] NOBILI A M, ANSELMI A. Relevance of the weak equivalence principle and experiments to test it:lessons from the past and improvements expected in space[J]. Physics Letters A, 2018, 382(33):2205-2218. doi: 10.1016/j.physleta.2017.09.027
    [7] 王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission:design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml
    [8] HUANG T, LVHR H, WANG H, et al.. The relationship of high-latitude thermospheric wind with ionospheric horizontal current, as observed by CHAMP satellite[J]. Journal of Geophysical Research:Space Physics, 2017, 122(12):12378-12392. doi: 10.1002/2017JA024614
    [9] SIEMES C. Improving GOCE cross-track gravity gradients[J]. Journal of Geodesy, 2018, 92(1-2):33-45. http://cn.bing.com/academic/profile?id=664df238f4bf8c7d8e567c6c2baf0665&encoded=0&v=paper_preview&mkt=zh-cn
    [10] FRAPPART F, RAMILLIEN G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment(GRACE) satellite mission:a review[J]. Remote Sensing, 2018, 10(6):829. doi: 10.3390/rs10060829
    [11] TOUBOUL P, MÉTRIS G, RODRIGUES M, et al.. MICROSCOPE mission:first results of a space test of the equivalence principle[J]. Physical Review Letters, 2017, 119(23):231101. doi: 10.1103/PhysRevLett.119.231101
    [12] ARMANO M, AUDLEY H, AUGER G, et al.. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23):231101. doi: 10.1103/PhysRevLett.116.231101
    [13] FLECHTNER F, DAHLE C, LANDERER F, et al.. GRACE follow-on: current mission status and next steps[C]. Proceedings of EGU General Assembly Conference Abstracts, 2018: 8990.
    [14] ANDERSON G, ANDERSON J, ANDERSON M, et al.. Experimental results from the ST7 mission on LISA Pathfinder[J]. Physical Review D, 2018, 98(10):102005. doi: 10.1103/PhysRevD.98.102005
    [15] 彭利荣, 马占龙, 王高文, 等.超薄光学元件精密加工关键技术[J].中国光学, 2015, 8(6):964-970. http://www.chineseoptics.net.cn/CN/abstract/abstract9356.shtml

    PENG L R, MA ZH L, WANG G W, et al.. Key technology of ultra-thin optical element precision manufacture[J]. Chinese Optics, 2015, 8(6):964-970.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9356.shtml
    [16] JOSSELIN V, TOUBOUL P, KIELBASA R. Capacitive detection scheme for space accelerometers applications[J]. Sensors and Actuators A:Physical, 1999, 78(2-3):92-98. doi: 10.1016/S0924-4247(99)00227-7
    [17] FAN D, LIU Y F, HAN F T, et al.. Identification and adjustment of the position and attitude for the electrostatic accelerometer's proof mass[J]. Sensors and Actuators A:Physical, 2012, 187:190-193. doi: 10.1016/j.sna.2012.08.037
    [18] LISA Pathfinder Collaboration. LISA pathfinder: first steps to observing gravitational waves from space[C]. Proceedings of 11th International LISA Symposium, IOP Publishing, 2017.
    [19] BORTOLUZZI D, FOULON B, MARIRRODRIGA C G, et al.. Object injection in geodesic conditions:in-flight and on-ground testing issues[J]. Advances in Space Research, 2010, 45(11):1358-1379. doi: 10.1016/j.asr.2010.01.023
    [20] LI G, WU S C, ZHOU Z B, et al.. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers[J]. Review of Scientific Instruments, 2013, 84(12):125004. doi: 10.1063/1.4833398
  • 加载中
图(9)
计量
  • 文章访问数:  2925
  • HTML全文浏览量:  1080
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-10
  • 修回日期:  2019-04-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回