Microstructure and corrosion resistance of AlCrFeCoNiCu high-entropy coating by laser deposition on an aluminum alloy
-
摘要: 为了提高铝合金表面的力学和耐腐蚀性能,利用激光沉积技术在铝合金表面制备了AlCrFeCoNiCu高熵合金涂层。使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、显微硬度计和电化学工作站,研究了涂层的相结构、微观组织、元素分布、硬度及耐腐蚀性能。结果表明,涂层与基材结合良好,基材中Al元素在熔池搅拌作用下上浮,使沉积层呈FCC相和BCC相;显微组织为典型的枝晶结构,Cu元素在枝晶间富集;涂层平均显微硬度为528HV0.2,约是基材的5倍;AlCrFeCoNiCu涂层在3.5% NaCl溶液中的腐蚀特征为点蚀和晶间腐蚀,耐腐蚀性优于基材。激光沉积制备的AlCrFeCoNiCu高熵合金可以改善铝合金表面性能。Abstract: To improve the mechanical and corrosion resistance of an aluminum alloys, laser deposition(LDP) was used to form an AlCrFeCoNiCu high-entropy alloy(HEA) coating on an aluminum alloy surface. The phase structure, microstructure, micro-hardness and corrosion resistance of the HEA coating were investigated using X-ray diffraction(XRD), scanning electronic microscopy with energy-dispersive spectroscopy(SEM-EDS), a microhardness tester and an electrochemical workstation. The experiment revealed that the coating had excellent adhesion to the substrate. The HEA coating consisted of body-centered cubic(BCC) and face-centered cubic(FCC) phases, while the microstructure was shown to be a typical dendritic structure. The coating had an average micro hardness of 528Hv0.2, which is five times greater than that of the substrate. Corrosion of the samples was shown to be pitting and intercrystalline corrosion in a 3.5%NaCl solution, and the corrosion resistance was superior to that of the substrate. Thus, AlCrFeCoNiCu HEA coating has been demonstrated to be an effective way of improving the surface properties of aluminum alloys.
-
Key words:
- laser technology /
- laser deposition /
- high-entropy alloy /
- corrosion resistance /
- aluminum alloy
-
图 6 AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中动电位极化后的SEM图. (a)基材形貌, (b)AlCrFeCoNiCu涂层形貌, (c)图(b)中A区域的局部放大图, (d)图(b)中B区域的局部放大图
Figure 6. SEM images of AlCrFeCoNiCu coating and the substrate after polarization tests in 3.5%NaCl solution. (a)Morphology of the substrate, (b)morphology of AlCrFeCoNiCu coating, (c)magnification of region A in Fig. 6(b), (d)magnification of region B in Fig. 6(b)
表 1 AlxCrFeCoNiCu(x=0, 0.5, 1, 1.5, 2)的混合熵、混合焓、原子半径比、价电子浓度比、电负性差
Table 1. Parameters of δ, Hmix, ΔSmix, VEC and χ for AlxCrFeCoNiCu(x=0, 0.5, 1, 1.5, 2)
Alloys δ/% ΔHmix/(kJ·mol-1) ΔSmix/(J·K-1·mol-1) VBC χ FeCoNiCrCu 1.07 3.2 13.3 8.80 0.12 Al0.5CrFeCoNiCu 3.90 -1.52 14.7 8.27 0.13 AlCrFeCoNiCu 4.82 -4.87 14.9 7.83 0.14 Al1.5CrFeCoNiCu 5.48 -7.05 14.8 7.46 0.14 Al2 CrFeCoNiCu 5.98 -8.65 14.5 7.14 0.15 Areas Al Cr Fe Co Ni Cu Nominal 0 20 20 20 20 20 1(Dendrite) 10.94 17.37 17.37 19.41 19.21 15.7 1(Interdentic) 8.78 16.30 17.73 19.73 16.21 21.25 2(Dendrite) 10.36 17.81 17.85 17.54 17.75 18.69 2(Interdendritic) 9.68 17.2 17.27 16.53 17.31 22.01 3(Dendrite) 13.26 19.25 17.58 19.15 15.23 15.53 3(Interdendritic) 11.21 17.23 15.21 17.21 16.26 20.88 表 3 AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中的电化学参数
Table 3. Eletrochemical parameters of AlCrFeCoNiCu coating and the substrate in 3.5%NaCl solution
Solution Samples Ecorr/V Icorr/μA 3.5%NaCl AlCrFeCoNiCu coating
Substrate-1.13
-1.409.22
35.4Areas Al Cr Fe Co Ni Cu 1(Dendrite) 8.7 20.63 19.27 19.42 19.59 12.39 1(Interdentic) 10.96 15.31 18.75 19.76 18.01 17.21 表 5 AlCrFeCoNiCu涂层在3.5%NaCl溶液中的等效电路参数
Table 5. Equivalent circuit parameters of AlCrFeCoNiCu coating in 3.5%NaCl solution
Rs/(kΩ·cm2) CPE1/(μF·cm-2) n Rc/(kΩ·cm2) HEA coating 3.12 17.2 0.892 2 982 -
[1] 秦国华, 杨扬, 李强, 等.7075铝合金厚板多道次蛇形热轧的分析与预测[J].光学 精密工程, 2017, 25(4):437-446. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704020QIN G H, YANG Y, LI Q, et al.. Analysis and prediction of muti-pass sanke hot rolling for 7075 aluminum alloy thick plate[J]. Opt. Precision Eng., 2017, 25(4):437-446.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704020 [2] 柴伟伟, 陈清华, 李琳红, 等.大功率LED灯珠与散热器直焊结构散热效果分析[J].发光学报, 2011, 32(11):1171-1175. http://d.old.wanfangdata.com.cn/Periodical/fgxb201111015CHAI W W, CHEN Q H, LI L H, et al.. Heat dissipation analysis of high power LED connected to copper coated heat sink by soldering[J]. Chinese Journal of Luminescence, 2011, 32(11):1171-1175.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201111015 [3] BUCHWALDER A, DALKE A, SPIES H J, et al.. Studies of technological parameters influencing the nitriding behavior of spray-formed Al alloys[J]. Surface & Coatings Technology, 2014, 258(3):1259-1259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=777e3bb7fe85620759d112d7cff9c846 [4] GUAN J, WANG J W, ZHANG D W. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG(1000) as an additive[J]. Applied Physics a-Materials Science & Processing, 2018, 124(6):7-25. doi: 10.1007/s00339-018-1861-5 [5] 薛军, 冯建涛, 马长征, 等.激光冲击强化对激光增材TC4钛合金组织和抗氧化性的影响[J].中国光学, 2018, 11(2):198-205. http://www.chineseoptics.net.cn/CN/abstract/abstract9560.shtmlXUE J, FENG J T, MA CH ZH, et al.. Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy[J]. Chinese Optics, 2018, 11(2):198-205.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9560.shtml [6] 马琛, 马壮, 高丽红, 等.激光对鳞片石墨改性酚醛树脂涂层的损伤机理[J].中国光学, 2017, 10(2):249-255. http://www.chineseoptics.net.cn/CN/abstract/abstract9473.shtmlMA CH, MA ZH, GAO L H, et al.. Laer damage mechanism of flake graphite modified phenolic resin coating[J]. Chinese Optics, 2017, 10(2):249-255.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9473.shtml [7] 刘洪喜, 李正学, 张晓伟, 等.热处理条件下激光原位合成高铌Ti-Al金属间化合物复合涂层的微结构特征[J].光学 精密工程, 2017, 25(6):1477-1485. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706011LIU H X, LI ZH X, ZHANG X W, et al.. Microstructure characteristics of laser in situ synthesis high Niobium Ti-Al intermetallic compound coating under heat treatment[J]. Opt. Precision Eng., 2017, 25(6):1477-1485.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706011 [8] 朱德亮, 陈吉星, 曹培林, 等.利用脉冲激光沉积法制备高Mg掺杂的六方相MgZnO薄膜[J].发光学报, 2010, 31(2):223-226. http://d.old.wanfangdata.com.cn/Periodical/fgxb201002015ZHU D L, CHEN J X, CAO P L, et al.. Heavily Mg-depoded hexagonal phase thin ZnO films prepared by pulsed laser depositon[J]. Chinese Journal of Luminescence, 2010, 31(2):223-226.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201002015 [9] 王成磊, 高原, 张光耀.CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J].稀有金属材料与工程, 2017, 46(8):2306-2312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201708047WANG CH L, GAO Y, ZHANG G Y. Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloys[J]. Rare Metal Materials and Engineering, 2017, 46(8):2306-2312.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201708047 [10] HE L, TAN Y F, WANG X L, et al.. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy[J]. Rare Metals, 2015, 34(11):789-796. doi: 10.1007/s12598-014-0299-y [11] TSAI M H, YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters, 2014, 2(3):107-123. doi: 10.1080/21663831.2014.912690 [12] SHU F Y, WU L, ZHAO H Y, et al.. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating[J]. Materials Letters, 2018, 211(10):235-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aed2f4b71b6c869339f5017ee9ed8339 [13] GUO Y X, LIU Q B, ZHOU F. Microstructure and properties of Fe5Cr5SiTiCoNbMoW coating by laser cladding[J]. Surface Engineering, 2018, 34(4):283-288. doi: 10.1080/02670844.2016.1213784 [14] MENG G H, LIN X, XIE H, et al.. Reinforcement and substrate interaction in laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J]. Journal of Alloys and Compounds, 2016, 672(10):660-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=670043617edb04d9a1aa527c553d627c [15] SHON Y K, JOSHI S S, KATAKAM S, et al.. Laser additive synthesis of high entropy alloy coating on aluminum:corrosion behavior[J]. Materials Letters, 2015, 142(3):122-125. http://www.sciencedirect.com/science/article/pii/S0167577X14021648 [16] NI C, SHI Y, LIU J, et al.. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding[J]. Optics and Laser Technology, 2018, 105(3):257-263. [17] SHI Y, NI C, LIU J, et al.. Microstructure and properties of laser clad high-entropy alloy coating on aluminium[J]. Materials Science and Technology, 2018, 34(10):1239-1245. doi: 10.1080/02670836.2018.1444921 [18] KATAKAM S, JOSHI S S, MRIDHA S, et al.. Laser assisted high entropy alloy coating on aluminum:microstructural evolution[J]. Journal of Applied Physics, 2014, 116(10):6-25. https://www.researchgate.net/publication/265689497_Laser_assisted_high_entropy_alloy_coating_on_aluminum_Microstructural_evolution [19] HUANG C, ZHANG Y Z, VILAR R, et al.. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41(3):338-343. http://www.sciencedirect.com/science/article/pii/S0261306912002920 [20] SINGH A K, SUBRAMANIAM A. On the formation of disordered solid solutions in multi-component alloys[J]. Journal of Alloys & Compounds, 2014, 587(7):113-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c12db29f283acbe95ae60dcf55f2db [21] ZHANG Y Z Y, LIN J P. Solid-solution phase formation rules for multi-component alloys[J]. Adv Eng Mater, 2008, 10(6):534-538. doi: 10.1002/(ISSN)1527-2648 [22] GUO S, NG C, LU J, et al.. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10):103505. doi: 10.1063/1.3587228 [23] FANG S C, CHEN W P, FU Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J]. Materials & Design, 2014, 54(7):973-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e273b4170675f8a319c30cfdae75bdce [24] GUO S, LIU C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science-Materials International, 2011, 21(6):433-446. doi: 10.1016/S1002-0071(12)60080-X [25] SUN Y N, CHEN P, LIU L H, et al.. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation[J]. Intermetallics, 2018, 93(5):85-88. http://www.sciencedirect.com/science/article/pii/S0966979517308245 [26] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater Trans, 2005, 46(12):2817-2829. doi: 10.2320/matertrans.46.2817 [27] ZHANG S, WU C L, ZHANG C H, et al.. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Opt. Laser Technol., 2016, 84(3):23-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e461ddb463c40cb8b5544583ccdf645a [28] 曹楚南.腐蚀电化学原理[M].北京:化学工业出版社, 2008.CAO CH N. Principles of Electrochemistry Corrosion[M]. Beijing:Chemical Industry Press, 2006.(in Chinese) [29] 王淼, 刘强, 张亚雄, 等.6061-T6铝合金多道搭接FSP腐蚀性能[J].材料研究学报, 2015, 29(8):589-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201508005WANG M, LIU Q, ZHANG Y X, et al.. Corrosion property of Al-alloy 6061-T6 processed by multipass friction stir processing[J]. Chinese Journal of Materials Research, 2015, 29(8):589-594.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201508005 [30] 范丽, 陈海龑, 董耀华, 等.激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J].金属学报, 2018, 54(7):1019-1030. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsxb201807007FAN L, CHEN H H, DONG Y H, et al.. Corrosion behavior of Fe-based laser cladding coating in hydrochloric acid solutions[J]. Acta Metallurgica Sinica, 2018, 54(7):1019-1030.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsxb201807007 [31] PANDA B, BALASUBRAMANIAM R, DWIVEDI G. On the corrosion behaviour of novel high carbon rail steels in simulated cyclic wet-dry salt fog conditions[J]. Corrosion Science, 2008, 50(6):101-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b396044e134755604791db16588c117 [32] 曹楚南, 张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002.CAO C N, ZHANG J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing:Science Press, 2002.(in Chinese) -