留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形半导体激光器研究进展

孙胜明 范杰 徐莉 邹永刚 杨晶晶 龚春阳

孙胜明, 范杰, 徐莉, 邹永刚, 杨晶晶, 龚春阳. 锥形半导体激光器研究进展[J]. 中国光学(中英文), 2019, 12(1): 48-58. doi: 10.3788/CO.20191201.0048
引用本文: 孙胜明, 范杰, 徐莉, 邹永刚, 杨晶晶, 龚春阳. 锥形半导体激光器研究进展[J]. 中国光学(中英文), 2019, 12(1): 48-58. doi: 10.3788/CO.20191201.0048
SUN Sheng-ming, FAN Jie, XU Li, ZOU Yong-gang, YANG Jing-jing, GONG Chun-yang. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. doi: 10.3788/CO.20191201.0048
Citation: SUN Sheng-ming, FAN Jie, XU Li, ZOU Yong-gang, YANG Jing-jing, GONG Chun-yang. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. doi: 10.3788/CO.20191201.0048

锥形半导体激光器研究进展

doi: 10.3788/CO.20191201.0048
基金项目: 

吉林省科技发展计划项目 20180519018JH

吉林省科技发展计划项目 20190302052GX

吉林省教育厅"十三五"科学技术项目 JJKH20190543KJ

长春理工大学科技创新基金 XJJLG-2016-07

详细信息
    作者简介:

    孙胜明(1991-), 男, 山东聊城人, 硕士研究生, 主要从事光电子技术与应用方面的研究。E-mail:sunshengming23@163.com

    范杰(1982—),男,吉林延边人,博士,助理研究员,2007年于吉林大学获得硕士学位,2013年于电子科技大学获得博士学位,主要从事光电子技术与应用方面的研究。E-mail:fanjie@cust.edu.cn

  • 中图分类号: TN248

Progress of tapered semiconductor diode lasers

Funds: 

Jilin Science and Technology Development Plan 20180519018JH

Jilin Science and Technology Development Plan 20190302052GX

Jilin Education Department "135" Science and Technology JJKH20190543KJ

the Innovation Science Foundation of Changchun University of Science and Technology XJJLG-2016-07

More Information
  • 摘要: 锥形半导体激光器具有高功率、高光束质量等特点,因此受到广泛关注并成为研究热点。从3种结构(传统结构、分布式布拉格反射(DBR)结构、侧向光栅条纹结构)的锥形半导体激光器出发,对国内外近十年具有代表性研究成果进行综述,介绍其理论研究和实验进展,并对锥形半导体激光器的未来发展进行展望。

     

  • 图 1  锥形半导体激光器样貌图[10]

    Figure 1.  Schematic of the tapered lasers[10]

    图 2  器件的阈值电流密度随温度的变化[12]

    Figure 2.  Plot of the threshold current density versus temperature[12]

    图 3  980 nm锥形激光器在不同输出功率时和不同驱动方式时的光束质量因子[13]

    Figure 3.  Dependence of the beam propagation ratio M2 on the output power for common separate contacting[13]

    图 4  不同外延设计的输出功率和光束质量因子M2的关系[18]

    Figure 4.  Beam propagation factor M2 with the outputpower for different epitaxial designs and experimental value for the symmetric structure[18]

    图 5  PCB层结构的锥形半导体激光器结构示意图[21]

    Figure 5.  Schematic of the tapered lasers based on longitudinal PBC structure[21]

    图 6  折射率分布和横向模式强度分布[21]

    Figure 6.  Refractive index distribution and calculated mode profiles[21]

    图 7  4种不同锥角大小结构的P-I-V曲线图[23]

    Figure 7.  Data for four different waveguide structures of the devices in a CW mode at room temperature[23]

    图 8  0°、3°、5°、8°Thz锥形半导体激光器电镜图[24]

    Figure 8.  SEM image of the tapered THz QCL with tapered angles equal to 0°, 3°, 5° and 8°[24]

    图 9  3A锥形区电流条件下,不同主振荡器电流条件(0、150、300 mA)的传统锥形激光器和DBR锥形激光器的近场强度、远场强度分布[26]

    Figure 9.  Near-and far-fields intensity for different RW(0、150、300 mA) currents at a taper current of 3 A[26]

    图 10  1 060 nm锥形半导体激光器结构示意图[28]

    Figure 10.  Cross-sectional schematic of the 1 060 nm DBR tapered laser[28]

    图 11  1 030 nm锥形半导体激光器结构示图[30]

    Figure 11.  Lateral layout of the presented 1 030 nm DBR tapered diode laser[30]

    图 12  3种不同DBR锥形半导体激光器设计[32]

    Figure 12.  Illustrations of the lateral layouts for DBR tapered diode lasers[32]

    图 13  DBR光栅加热电极[33]

    Figure 13.  Heater contact pads for DBR grating[33]

    图 14  913 nm双锥形半导体激光器结构示意图[35]

    Figure 14.  Schematical picture of the device. The scanning electron microscope map(inset) shows the ridge waveguide and the HOSGs on both sides of it[35]

    图 15  主振荡器侧向条纹锥形半导体激光器结构示意图[36]

    Figure 15.  Schematic diagram of a tapered THz QCL with lateral gratings[36]

    图 16  带有侧向Cr金属光栅的DFB锥形半导体激光器结构示意图[37]

    Figure 16.  Schematic diagram of laterally tapered ridge waveguide InGaAsP-InGaAsP MQW DFB lasers with Cr surface gratings[37]

    图 17  25 ℃和55 ℃条件下,器件光谱图[38]

    Figure 17.  Spectral characteristic of the device at 25 ℃ and 55 ℃ heatsink temperature[38]

    表  1  3种锥形半导体激光器性能

    Table  1.   Properties of three kinds tapered laser diode structures

    器件结构 出光功率 M2因子 最大亮度 加工工艺
    传统[14-16] W级 较大, 较不稳定 460 MW·cm-2sr-1 较简单
    DBR[27-28] 10W级 较小, 稳定 700 MW·cm-2sr- 较复杂
    侧向光栅条纹[23] mW级 较小 偏小 较简单
    下载: 导出CSV
  • [1] 刘友强, 曹银花, 李景, 等.激光加工用5 kW光纤耦合半导体激光器[J].光学 精密工程, 2015, 23(5):1279-1287. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201505011

    LIU Y Q, CAO Y H, LI J, et al.. 5 kW fiber coupling diode laser for laser processing[J]. Opt. Precision Eng., 2015, 23(5):1279-1287.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201505011
    [2] 张建, 宁永强, 张建伟, 等.微型铷原子钟专用795 nm垂直腔表面发射激光器[J].光学 精密工程, 2014, 22(1):50-57. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201401009

    ZHANG J, NING Y Q, ZHANG J W, et al.. 795 nm VCSELs for 87Rb based miniaturized atomic clock[J]. Opt. Precision Eng., 2014, 22(1):50-57.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201401009
    [3] 徐华伟, 宁永强, 曾玉刚, 等.852 nm半导体激光器量子阱设计与外延生长[J].光学 精密工程, 2013, 21(3):590-597. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201303008

    XU H W, NING Y Q, ZENG Y G, et al.. Design and epitaxial growth of quantum-well for 852 nm laser diode[J]. Opt. Precision Eng., 2013, 21(3):590-597.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201303008
    [4] ZHANG Z, ZHENG H, TIAN Y, et al.. Stable scanning of dressing fields on multiwave mixing in optical ring cavity[J]. Quantum Electronics of IEEE Journal, 2014, 50(7):575-580. doi: 10.1109/JQE.2014.2327015
    [5] 吴涛, 郭栓银.980 nm高功率锥形激光器巴条的制备及光电特性[J].激光与光电子学展, 2016(4):138-143.

    WU T, GUO SH Y. Fabrication and electro-optic properties of 980 nm high-power tapered laser bar[J]. Laser & Optoelectronics Progress, 2016(4):138-143.(in Chinese)
    [6] SUMP B, KLEHR A, VU T N, et al.. 975 nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications[C]. Proc. SPIE 9382, Novel In-Plane Semiconductor Lasers ⅩⅣ, 2015: 93821k.
    [7] CHRISTENSEN M, HANSEN A K, NOORDEGRAAF D, et al.. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment[C]. Proc. SPIE 10088, Nonlinear Frequency Generation and Conversion: Materials and Devices ⅩⅥ, 2017: 100881A.
    [8] TIMMERMANN A, MEINSCHIEN J, BARTOSCHEWSKI D. Next generation high-brightness diode lasers offer new industrial applications[C]. Proc. SPIE 6876, High Power Diode Laser Technology and Applications Ⅵ, 2008: 68760U.
    [9] HANSEN A K, TAWFIEQ M, JENSEN O B, et al.. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals[J]. Optics Express, 2015, 23(12):15921-15934. doi: 10.1364/OE.23.015921
    [10] 李景, 邱运涛, 曹银花, 等.高亮度锥形半导体激光器[J].发光学报, 2016, 37(8):990-995. http://d.old.wanfangdata.com.cn/Periodical/fgxb201106012

    LI J, QIU Y T, CAO Y H, et al.. High brightness tapered diode laser[J]. Chinese Journal of Luminescence, 2016, 37(8):990-995.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201106012
    [11] 杨晔, 刘云, 秦莉, 等.850 nm高亮度锥形半导体激光器的光电特性[J].发光学报, 2011, 32(6):593-597. http://d.old.wanfangdata.com.cn/Periodical/fgxb201106012

    YANG Y, LIU Y, QIN L, et al.. Electro-optic properties of 850nm high-brightness tapered lasers[J]. Chinese Journal of Luminescence, 2011, 32(6):593-597.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201106012
    [12] 黄海华, 刘云, 杨晔, 等.850 nm锥形半导体激光器的温度特性[J].中国光学, 2013, 6(2):201-207. http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml

    HUANG H H, LIU Y, YANG Y, et al.. Temperature characteristics of 850 nm tapered semiconductor lasers[J]. Chinese Optics, 2013, 6(2):201-207.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml
    [13] 李璟, 刘媛媛, 马骁宇.电极分离的980 nm锥形激光器的研制[J].半导体学报, 2007, 28(8):1302-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtxb200708026

    LI J, LIU Y Y, MA X Y. High-brightness tapered diode lasers emitting at 980 nm with electrically separated ridge waveguide and tapered section[J]. Chinese Journal of Semiconductors, 2007, 28(8):1302-1306.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtxb200708026
    [14] ADAMIEC P, SUMPF B, FEISE D, et al.. Twin-contact 645-nm tapered laser with 500-mW output power[J]. IEEE Photonics Technology Letters, 2009, 21(4):236-238. doi: 10.1109/LPT.2008.2010509
    [15] MICHEL N, ODRIOZOLA H, KWOK C H, et al.. High modulation efficiency and high power 1060 nm tapered lasers with separate contacts[J]. Electronics Letters, 2009, 45(2):103-104. doi: 10.1049/el:20093298
    [16] WALTHER M, KIEFER R. Improved beam quality for high-power tapered laser diodes with LMG(low-modal-gain) epitaxial layer structures[C]. Proc. SPIE 3284, In-Plane Semiconductor Lasers: from Ultraviolet to Mid-Infrared Ⅱ, 1998: 72-79.
    [17] DITTMAR F, SUMPF B, FRICKE J, et al.. High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M2=1.9 at P=4.4 W[J]. IEEE Photonics Technology Letters, 2006, 18(4):601-603. doi: 10.1109/LPT.2006.870152
    [18] TIJERO J M G, ODRIOZOLA H, BORRUEL L, et al.. Enhanced brightness of tapered laser diodes based on an asymmetric epitaxial design[J]. IEEE Photonics Technology Letters, 2007, 19(20):1640-1642. doi: 10.1109/LPT.2007.905083
    [19] KRAKOWSKI M M, AUZANNEAU S C, CALLIGARO M, et al.. High-power and high-brightness laser diode structures at 980 nm using Al-free materials[C]. Proc. SPIE 4651, Novel In-Plane Semiconductor Lasers, 2002: 80-91.
    [20] GUO R, ZHENG J, ZHANG Y, et al.. Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers[J]. Science Bulletin, 2015, 60(11):1026-1032. doi: 10.1007/s11434-015-0807-y
    [21] MA X, QU H, ZHAO P, et al.. 980 nm tapered lasers with photonic crystal structure for low vertical divergence[C]. Proc. SPIE 10019, Optoelectronic Devices and Integration Ⅵ, 2016: 1001907.
    [22] 周旭彦, 赵少宇, 马晓龙, 等.低垂直发散角高亮度光子晶体半导体激光器[J].中国激光, 2017, 44(2):0201010. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702011.htm

    ZHOU X Y, ZHAO SH Y, MA X L, et al.. Low vertical divergence angle and high brightness photonic crystal semiconductor laser[J]. Chinese Journal of Laser, 2017, 44(2):0201010.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702011.htm
    [23] HUANG S S, ZHANG Y, LIAO Y P, et al.. High-power single-spatial-mode gasb tapered laser around 2.0μm with very small lateral beam divergence[J]. Chinese Physics Letters, 2017, 34(8):084202. doi: 10.1088/0256-307X/34/8/084202
    [24] LI Y, WANG J, YANG N, et al.. The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers[J]. Optics Express, 2013, 21(13):15998-16006. doi: 10.1364/OE.21.015998
    [25] 徐天鸿, 姚辰, 万文坚, 等.锥形太赫兹量子级联激光器输出功率与光束特性研究[J].物理学报, 2015, 64(22):224212. http://d.old.wanfangdata.com.cn/Periodical/wlxb201522001

    XU T H, YAO CH, WAN W J, et al.. Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers[J]. Acta Physica Sinica, 2015, 64(22):24212.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201522001
    [26] KAUNGA-NYIRENDA S N, BULL S, LIM J J, et al.. Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating[J]. IET Optoelectronics, 2014, 8(2):99-107. doi: 10.1049/iet-opt.2013.0082
    [27] FRICKE J, WENZEL H, MATALLA M, et al.. 980-nm DBR lasers using higher order gratings defined by i-line lithography[J]. Semiconductor Science & Technology, 2005, 20(11):1149-1152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd37b98e37eaf5f64420bab2aa826bba
    [28] HASLER K H, SUMPF B, ADAMIEC P, et al.. 5-w DBR tapered lasers emitting at 1060 nm with a narrow spectral linewidth and a nearly diffraction-limited beam quality[J]. IEEE Photonics Technology Letters, 2008, 20(19):1648-1650. doi: 10.1109/LPT.2008.2002744
    [29] SUMPF B, ADAMIEC P, FRICKE J, et al.. 1060 nm DBR tapered lasers with 12 W output power and a nearly diffraction limited beam quality[C]. Proc. SPIE 7230, Novel In-Plane Semiconductor Laser ⅤⅢ, 2009: 72301E.
    [30] MVLLER A, FRICKE J, BUGGE F, et al.. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm[J]. Applied Physics B, 2016, 122(4):87. doi: 10.1007/s00340-016-6360-9
    [31] MVLLER A, ZINK C, FRICKE J, et al.. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[C]. Proc. SPIE 10123, Novel In-Plane Semiconductor Lasers ⅩⅥ, 2017: 101231B.
    [32] MVLLER A, FRICKE J, BROX O, et al.. Increased diffraction efficiencies of DBR gratings in diode lasers with adiabatic ridge waveguides[J]. Semiconductor Science & Technology, 2016, 31(12):125011.
    [33] PASCHKE K, BLUME G, BROX O, et al.. Watt-level continuous-wave diode lasers at 1180 nm with high spectral brightness[C]. Proc. SPIE 9348, High-Power Diode Laser Technology and Applications ⅩⅢ, 2015: 93480X.
    [34] VIHERI L J, KEL J M, AHO A, et al.. High-power 1550 nm tapered DBR lasers fabricated using soft UV-nanoimprint lithography[C]. Proc. SPIE 9733, High-Power Diode Laser Technology and Applications XIV, 2016: 97330Q.
    [35] LIU L, QU H W, WANG Y F, et al.. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 2014, 39(11):3231-3234. doi: 10.1364/OL.39.003231
    [36] YAO C, XU T H, WAN W J, et al.. Single-mode tapered terahertz quantum cascade lasers with lateral gratings[J]. Solid-State Electronics, 2016, 122:52-55. doi: 10.1016/j.sse.2016.04.008
    [37] YEO C I, JANG S J, YU J S, et al.. 1.3μm laterally tapered ridge waveguide dfb lasers with second-order cr surface gratings[J]. IEEE Photonics Technology Letters, 2010, 22(22):1668-1670.
    [38] BECKER S, SCHEUERMANN J, WEIH R, et al.. Laterally coupled DFB interband cascade laser with tapered ridge[J]. Electronics Letters, 2017, 53(11):747-748.
    [39] WEIH R, NAHLE L, HOFLING S, et al.. Single mode interband cascade lasers based on lateral metal gratings[J]. Applied Physics Letters, 2014, 105(7):071111. doi: 10.1063/1.4893788
    [40] JIA Z W, WANG L J, TAN S, et al.. Improvement of buried grating DFB quantum cascade lasers by small-angle tapered structure[J]. IEEE Photonics Technology Letters, 2017, 29(10):783-785. doi: 10.1109/LPT.2017.2681127
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  3768
  • HTML全文浏览量:  1447
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-03-03
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!