留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens

SONG Fang-xi MENG Wei-dong XIA Yan CHEN Yan PU Xiao-yun

宋芳嬉, 孟伟东, 夏燕, 陈艳, 普小云. 用双液芯柱透镜测量蔗糖水溶液的液相扩散系数[J]. 中国光学(中英文), 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
引用本文: 宋芳嬉, 孟伟东, 夏燕, 陈艳, 普小云. 用双液芯柱透镜测量蔗糖水溶液的液相扩散系数[J]. 中国光学(中英文), 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
SONG Fang-xi, MENG Wei-dong, XIA Yan, CHEN Yan, PU Xiao-yun. Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens[J]. Chinese Optics, 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
Citation: SONG Fang-xi, MENG Wei-dong, XIA Yan, CHEN Yan, PU Xiao-yun. Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens[J]. Chinese Optics, 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630

用双液芯柱透镜测量蔗糖水溶液的液相扩散系数

基金项目: 

云南省教育厅科学研究基金 基金编号2016CYH05

云南省科技计划重大科技专项 

详细信息
    作者简介:

    宋芳嬉(1992-)女, 云南富宁人, 硕士研究生, 主要从事液相扩散系数测量方面的研究, E-mail:329870938@qq.com

    普小云(1957-), 男, 云南昆明人, 博士, 教授, 主要从事微腔激光和光学检测方面的研究, E-mail: xypu@163.com

  • 中图分类号: O645.14

Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens

doi: 10.3788/CO.20181104.0630
Funds: 

Applied Basic Research Key Project of Yunnan 基金编号2016CYH05

Key Project on Electric Information and Next Generation IT Technology of Yunnan 

More Information
    Author Bio:

    SONG Fang-xi(1992—), female, master degree student, mainly engaged in the study of liquid phase diffusion coefficient measurement. E-mail: 329870938@qq.com

    PU Xiao-yun(1957—), male, PhD, professor, mainly engaged in micro cavity laser and optical detection research. E-mail:xypu@163.com

    Corresponding author: PU Xiao-yun, E-mail:xypu@163.com
  • 摘要: 基于双液芯柱透镜的折射率空间分辨测量精度高的特点,本文采用两种方法在室温(25℃)下分别测量了不同浓度的蔗糖水溶液的液相扩散系数。方法一:等折射率薄层移动法,通过记录扩散过程中特定折射率薄层随时间的变化关系计算液相扩散系数。方法二:瞬态图像分析法,通过读取一幅瞬态扩散图像中图像宽度与扩散位置之间的关系确定液相扩散系数。双液芯柱透镜的前液芯作为扩散池和主要成像元件,后液芯作为消球差辅助系统。充分利用了双液芯柱透镜可以按需减小特定液体薄层处的球差以及能够在一定的折射率范围内同时减小球差,两种方法均具有测量精度高的特点。两种方法的测量结果与文献值的相对误差分别小于1.3%和3.9%,表明用双液芯柱透镜测量液相扩散系数时,测量系统稳定可靠,测量结果准确。

     

  • 图 1  实验装置图

    Figure 1.  Schematic diagram of the experimental setup

    图 2  双液芯柱透镜成像原理图

    Figure 2.  Imaging principle of DLCL

    图 3  双液芯柱透镜及其成像光路俯视图

    Figure 3.  Top view of DLCL and corresponding imaging light path

    图 4  不同折射率薄层球差与后液芯液体折射率的关系

    Figure 4.  Relationship between the refractive index thin layer spherical aberration and the refractive index of the rear liquid core

    图 5  0.10→0.90 mol/L蔗糖水溶液扩散图像

    Figure 5.  Diffusion images of 0.10→0.90 mol/L aqueous sucrose solution

    图 6  不同扩散体系球差之和与后液芯液体折射率的关系

    Figure 6.  Relationship between the sum of spherical aberrations of different diffusion systems and the refractive index of the rearliquid core

    图 7  0.10→0.90 mol/L蔗糖水溶液的瞬态扩散图像

    Figure 7.  Transient diffusion image of 0.10→0.90 mol/L aqueous sucrose solution

    表  1  Data record of equivalent refractive index location over time

    Table  1.   Data record of equivalent refractive index location over time

    t/sZi/μmt/sZi/μm
    1 20034.642 249.54 50067.084 350.5
    1 50038.732 442.04 80069.284 488.0
    1 80042.432 673.05 10071.414 614.5
    2 10045.832 948.05 40073.484 730.0
    2 40048.993 157.05 70075.504 829.0
    2 70051.963 366.06 00077.465 016.0
    3 00054.773 613.56 30079.375 131.5
    3 30057.453 800.56 60081.245 203.0
    3 60060.003 965.56 90083.075 307.5
    3 90062.454 130.57 20084.855 417.5
    4 20064.814 224.0---
    下载: 导出CSV

    表  2  Data of the equivalent refractive index method of aqueous sucrose solution for different concentrations

    Table  2.   Data of the equivalent refractive index method of aqueous sucrose solution for different concentrations

    Concentration/
    (mol·L-1)
    Fitting
    result/μm
    Correlation
    coefficient
    D/
    ×10-6 cm2·s-1
    Dlit[24]/
    ×10-6cm2·s-1
    Relative
    error/%
    0.30Zi=63.8-36.90.999 54.224.26-0.94
    0.50Zi=51.7-68.60.998 73.703.670.82
    0.70Zi=42.9-58.70.997 13.073.11-1.29
    下载: 导出CSV

    表  3  Refractive index spatial distribution data at 2400 s

    Table  3.   Refractive index spatial distribution data at 2400 s

    Zi/μmΣi/μmniCierfinv
    3 311.038.51.338 70.115 61.459 1
    3 349.5441.338 60.113 61.499 6
    3 415.5551.338 60.113 61.499 6
    3 470.560.51.338 50.111 51.545 7
    3 536.5661.338 50.111 51.545 7
    3 591.5771.338 40.109 51.599 6
    3 674.082.51.338 40.109 51.599 6
    3 756.593.51.338 30.107 41.664 7
    3 822.5991.338 30.107 41.664 7
    3 899.51101.338 20.105 41.748 0
    下载: 导出CSV

    表  4  Data of transient methods for different concentrations of aqueous sucrose solution

    Table  4.   Data of transient methods for different concentrations of aqueous sucrose solution

    Concentration/
    (mol·L-1)
    Fitting
    result/μm
    Correlation
    coefficient
    D/
    ×10-6 cm2·s-1
    Dlit[24]/
    ×10-6cm2·s-1
    Relative
    error/%
    0.30Zi=2049.6x-59.80.970 64.384.262.82
    0.50Zi=1908.2x-44.90.976 73.793.673.27
    0.70Zi=1761.1x-69.20.977 93.233.113.86
    下载: 导出CSV
  • [1] CUSSLER E L. Diffusion:Mass Transfer in Fluid Systems[M]. 3rd Ed. London:Cambridge University Press, 2009.
    [2] CHHANIWAL V K, ANAND A, GIRHE S. New optical techniques for diffusion studies in transparent liquid solutions[J]. J. Opt. A:Pure & Appl. Opt., 2003, 5(5):S329-337. https://www.researchgate.net/publication/230994620_New_optical_techniques_for_diffusion_studies_in_transparent_liquid_solutions
    [3] WEISS N, LEEUWEN T G, KALKMAN J. Simultaneous and localized measurement of diffusion and flow using optical coherence tomography[J]. Opt. Express, 2015, 23(3):3448-3459. doi: 10.1364/OE.23.003448
    [4] 王振中, 王楠, 姚文静.低扩散系数对Pd77Cu6Si17合金易非晶化的影响[J].物理学报, 2010, 59(10):7431-7436. https://www.researchgate.net/publication/286595500_Effect_of_low_diffusion_coefficient_on_glass_phase_formation_in_Pd77Cu6Si17_alloy

    WANG ZH ZH, WANG N, YAO W J. Effect of low diffusion coefficient on glass phase formation in Pd77Cu6Si17 alloy[J]. Acta Phys. Sin., 2010, 59(10):7431-7436.(in Chinese) https://www.researchgate.net/publication/286595500_Effect_of_low_diffusion_coefficient_on_glass_phase_formation_in_Pd77Cu6Si17_alloy
    [5] DONEV A, NONAKA A, BHATTACHARJEE A K, et al.. Low mach number fluctuating hydrodynamics of multispecies liquid mixtures[J]. Physics of Fluids, 2015, 27(3):1085-1105. http://adsabs.harvard.edu/abs/2015PhFl...27c7103D
    [6] 马友光, 朱春英, 何明霞, 等.氨基酸在水溶液中扩散系数的实验研究[J].激光技术, 2005, 29(2):145-147. https://www.sciencedirect.com/science/article/pii/S0065323308606270

    MA Y G, ZHU C Y, HE M X, et al. The experimental study about the diffusivities of amino acids in aqueous solution[J]. Laser Technology, 2005, 29(2):145-147.(in Chinese) https://www.sciencedirect.com/science/article/pii/S0065323308606270
    [7] CRANK J. The Mathematics of Diffusion[M]. 2nd Ed. Oxford:Oxford University Press, 1975:2-26.
    [8] BREER J, GROOT K D, SCH NERT H. Diffusion in the diaphragm cell:continuous monitoring of the concentrations and determination of the differential diffusion coefficient[J]. Journal of Solution Chemistry, 2014, 43(1):71-82. doi: 10.1007/s10953-013-0020-z
    [9] HE M G, ZHANG S, ZHANG Y, et al.. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures[J]. Opt. Express, 2015, 23(9):10884-10889. doi: 10.1364/OE.23.010884
    [10] CIPELLETTI L, BIRON J P, MARTIN M, et al.. Measuring arbitrary diffusion coefficient distributions of Nano-Objects by Taylor dispersion analysis[J]. Anal. Chem., 2015, 87(16):8489-8496. doi: 10.1021/acs.analchem.5b02053
    [11] MEREAU C, CAVALIER A. Sarcolemma phospholipid structure investigated by immunogold electron microscopy and P NMP spectroscopy with lanthanide ions[J]. FEBS Letters, 2001, 509(3):417-422. doi: 10.1016/S0014-5793(01)03199-4
    [12] YANG C, LI W, WU C, et al.. Laser light-scattering study of solution dynamics of water/cycloether mixtures[J]. Journal of Physical Chemistry B, 2004, 108(31):1794-1801. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.540.1295
    [13] CULBERTSON C T, JACOBSON S C, RANSEY J M, et al.. Diffusion coefficient measurements in microfluidic devices[J]. Talanta, 2002, 56(2):365-373. doi: 10.1016/S0039-9140(01)00602-6
    [14] WANG J H. Application of a radioactive tracer method for diffusion study in some liquids[J]. Pramana, 1991, 37(2) 105-114. doi: 10.1007/BF02875296
    [15] 李强, 普小云.用毛细管成像法测量液相扩散系数-等折射率薄层测量方法[J].物理学报, 2013, 62(9):094206-6. http://wulixb.iphy.ac.cn/EN/Y2013/V62/I9/094206

    LI Q, PU X Y. Measuring the diffusion coefficient of liquids by capillary imaging method:equivalent refractive index method[J]. Acta Phys. Sin., 2013, 62(9):094206-6.(in Chinese) http://wulixb.iphy.ac.cn/EN/Y2013/V62/I9/094206
    [16] 孟伟东, 孙丽存, 翟影, 等.用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法[J].物理学报, 2015, 64(11):114205-7.

    MENG W D, SUN L C, ZHAI Y, et al.. Rapid measurement of the diffusion coefficient of liquidsusing a liquid-core cylindricallens:a method foranalysing an instantaneous diffusive picture[J]. Acta Phys. Sin., 2015, 64(11):114205-7.(in Chinese)
    [17] SUNL C, MENG W D, PU X Y. New method to measure liquid diffusivity byanalyzing an instantaneous diffusion image[J]. Opt. Express, 2015, 23(18):23155-23166. doi: 10.1364/OE.23.023155
    [18] MENG W D, XIA Y, SONG F X, et al.. Double liquid-core cylindrical lens utilized to measure liquid diffusion coefficient[J]. Opt. Express, 2017, 25(5):5626-5640. doi: 10.1364/OE.25.005626
    [19] 李零印, 王一凡.液体变焦技术的发展与展望[J].中国光学, 2012, 5(6):578-582. http://www.opticsjournal.net/abstract.htm?id=OJ121224000186aGcJfL

    LI L Y, WANG Y F. Development and prospect of varifocal-liquid technique[J]. Chinese Optics, 2012, 5(6):578-582.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ121224000186aGcJfL
    [20] 张鹰, 张新, 史广维, 等.液体透镜在变焦系统中的应用[J].中国光学, 2013, 6(1):46-56. http://www.opticsjournal.net/Abstract.htm?id=OJ130206000061gNjQmS

    ZHANG Y, ZHANG X, SHI G W, et al.. Applications of liquid lenses in zoom systems[J]. Chinese Optics, 2013, 6(1):46-56. http://www.opticsjournal.net/Abstract.htm?id=OJ130206000061gNjQmS
    [21] 邢曼男, 白然, 普小云.精确测量微量液体折射率的新方法[J].光学 精密工程, 2008, 16(7):1196-1202. https://www.researchgate.net/publication/292934966_Novel_measuring_method_for_refractive_index_of_micro-quantity_liquid

    XING MN, BAI R, PU X Y. Novel measuring method for refractive index of micro-quantity liquid[J]. Opt. Precision Eng., 2008, 16(7):1196-1202. https://www.researchgate.net/publication/292934966_Novel_measuring_method_for_refractive_index_of_micro-quantity_liquid
    [22] 张宗权, 徐铭, 任俊鹏, 等.封闭玻璃管道内液体折射率的非接触测量[J].光学 精密工程, 2016, 24(10):2408-2416. doi: 10.3788/OPE.

    ZHANG Z Q, XU M, REN J P, et al..Non-contact measurement for liquid refractive index in a closed pipe[J]. Opt. Precision Eng., 2016, 24(10):2408-2416. doi: 10.3788/OPE.
    [23] SUN L C, PU X Y. A novel visualization technique for measuring liquid diffusion coefficient based on asymmetric liquid-core cylindrical lens[J]. SCI Rep, 2016, 6(6):28264-1. https://www.researchgate.net/publication/305449483_A_novel_visualization_technique_for_measuring_liquid_diffusion_coefficient_based_on_asymmetric_liquid-core_cylindrical_lens
    [24] 马有光, 段志青, 朱春英.激光实时全息干涉法测量甘氨酸水溶液扩散系数[J].应用光学, 2004, 24(2):99-101.

    MA Y G, DUAN ZH Q, ZHU CH Y, et al.. Diffusivity measurement of glycine aqueous solution using real-time holographicinterferometry[J]. Applied Laser, 2004, 24(2):99-101.(in Chinese)
    [25] 孙丽存, 孟伟东, 李强, 等.电子目镜显微镜景深的确定与测量[J].光学 精密工程, 2013, 21(5):1151-1159. doi: 10.3788/OPE.

    SUN L C, MENG W D, LI Q, et al.. Calculation and measurement of depth of field for microscope with electronic ocular[J]. Opt. Precision Eng., 2013, 21(5):1151-1159. doi: 10.3788/OPE.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1751
  • HTML全文浏览量:  605
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!