Advances in preparation and biomedical applications of fluorescent carbon quantum dots
-
摘要: 碳量子点是一类具有优异的荧光性能和高生物相容性的纳米材料,在很多领域有广泛的应用,是目前研究的热点材料。本文介绍了碳量子点不同的合成方法,以及碳量子点的荧光、化学发光、电化学发光、类过氧化物酶的活性及毒性等性能的最新研究进展。此外,还对碳量子点在生物传感、生物成像及药物传递等生物医学应用进行了概述。Abstract: Carbon quantum dots are a class of nanomaterials with excellent fluorescence properties and high biocompatibility. They are widely used in many fields and are currently hot research materials. In this paper, different methods for the synthesis of carbon quantum dots, as well as recent advances in the performance of carbon quantum dots such as fluorescence, chemiluminescence, electrochemiluminescence, peroxidase-like activity, and toxicity, are described. Moreover, an overview of carbon quantum dots in biomedical applications such as biosensing, bioimaging, and drug delivery is also provided.
-
Key words:
- carbon quantum dots /
- fluorescence /
- biosensing /
- bioimaging /
- drug delivery
-
图 6 碳量子点用于DNA检测。由组氨酸碳化得到的碳量子点被探针ssDNA包裹后加入AuNPs,发生荧光猝灭。目标ssDNA存在时,荧光恢复[83]
Figure 6. DNA detection of carbon nanodots/AuNPs. The PL of carbon nanodots, prepared upon the carbonization of histidine and further coated with probe ssDNA is quenched upon addition of AuNPs. The fluorescence can be recovered in the presence of target ssDNA[83]
图 7 两亲性碳量子点应用于细胞成像。(a)是中国仓鼠卵巢上皮细胞明场图,(b)、(c)、(d)分别是405、488、561 nm激发下的共聚焦荧光显微成像图[89]
Figure 7. Amphiphilic carbon nanodots employed in cell imaging. Bright-feld image(a) and confocal fluorescence microscopy images of epithelial Chinese hamster ovary(CHO) cells incubated with amphiphilic C-dots. The confocal fluorescence microscopy images were recorded at excitation of 405 nm(b), 488 nm(c) and 561 nm(d)[89]
-
[1] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes——the route toward applications[J]. Science, 2002, 297(5582):787-792. doi: 10.1126/science.1060928 [2] MENG F Y, TANG C H, WANG B D, et al.. Peptide and carbon nanotubes assisted detection of apoptosis by square wave voltammetry[J]. Electrochim Acta, 2016, 199:142-146. doi: 10.1016/j.electacta.2016.03.149 [3] HAN K, MIAO P, TONG H, et al.. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol[J]. Applied Physics Letters, 2014, 104(5):053101. doi: 10.1063/1.4863662 [4] JUNG S, LEE J, CHOI Y, et al.. Improved interface control for high-performance graphene-based organic solar cells[J]. 2D Materials, 2017, 4(4):045004. doi: 10.1088/2053-1583/aa823b [5] LI X X, MIAO P, NING L M, et al.. Study of the interaction between graphene oxide and surface-confined biomolecules to develop new kind of biosensors[J]. Current Nanoscience, 2014, 10(6):801-806. doi: 10.2174/1573413710666140714171448 [6] SAVIN A V, KIVSHAR Y S. Transport of fullerene molecules along graphene nanoribbons[J]. Scientific Reports, 2012, 2:1012. doi: 10.1038/srep01012 [7] CIRO J, MESA S, MONTOYA J F, et al.. Simultaneous top and bottom perovskite interface engineering by fullerene surface modification of titanium dioxide as electron transport layer[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29654-29659. http://cn.bing.com/academic/profile?id=2258b53859ecdb3f2099e59a78a4b974&encoded=0&v=paper_preview&mkt=zh-cn [8] ARAMESH M, FOX K, LAU D W, et al.. Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures[J]. Carbon, 2014, 75:452-464. doi: 10.1016/j.carbon.2014.04.025 [9] WU K H, LIU Y, LUO J, et al.. The coulombic nature of active nitrogen sites in N-doped nanodiamond revealed in situ by ionic surfactants[J]. ACS Catalysis, 2017:7(5):3295-3300. doi: 10.1021/acscatal.7b00579 [10] MIAO P, HAN K, TANG Y G, et al.. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595. doi: 10.1039/C4NR05712K [11] ZHANG Z, ZHANG J, CHEN N, et al.. Graphene quantum dots:an emerging material for energy-related applications and beyond[J]. Energy & Environmental Science, 2012, 5(10):8869-8890. http://cn.bing.com/academic/profile?id=a879f95ce80e62bdef68bdf5c7b3896b&encoded=0&v=paper_preview&mkt=zh-cn [12] GUPTA V, CHAUDHARY N, SRIVASTAVA R, et al.. Luminscent graphene quantum dots for organic photovoltaic devices[J]. Journal of the American Chemical Society, 2011, 133(26):9960-9963. doi: 10.1021/ja2036749 [13] YU P, WEN X, TOH Y R, et al.. Temperature-dependent fluorescence in carbon dots[J]. The Journal of Physical Chemistry C, 2012, 116(48):25552-25557. doi: 10.1021/jp307308z [14] LIU H, YE T, MAO C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angewandte Chemie International Edition, 2007, 46(34):6473-6475. doi: 10.1002/(ISSN)1521-3773 [15] LI Y, HU Y, ZHAO Y, et al.. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6):776-780. doi: 10.1002/adma.201003819 [16] 袁曦, 郑金桔, 李海波, 等.Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813. http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtmlYUAN X, ZHENG J J, LI H B, et al.. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chinese Optics, 2015, 8(5):806-813.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml [17] LIU Y, ZHAO Y, ZHANG Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(Ⅱ) ion detection[J]. Sensors and Actuators B:Chemical, 2014, 196:647-652. doi: 10.1016/j.snb.2014.02.053 [18] KRISHNA A S, NAIR P A, RADHAKUMARY C, et al.. Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum[J]. Materials Research Express, 2016, 3(5):055001. doi: 10.1088/2053-1591/3/5/055001 [19] 李晓峰, 周明, 张严, 等.氮掺杂碳量子点的合成、表征及其在细胞成像中的应用[J].材料科学与工程学报, 2015, 33(1):41-45+121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201501010LI X F, ZHOU M, ZHANG Y, et al.. Synthesis, characterization and cell imaging application of nitrogen-doped carbon quantum dots[J]. Journal of Materials Science and Engineering, 2015, 33(1):41-45+121.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201501010 [20] CAO L, WANG X, MEZIANI M J, et al.. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37):11318-11319. doi: 10.1021/ja073527l [21] SHI L, LI L, LI X, et al.. Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing[J]. Sensors and Actuators B:Chemical, 2017, 251:234-241. doi: 10.1016/j.snb.2017.05.065 [22] CHANDRA S, DAS P, BAG S, et al.. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles[J]. Nanoscale, 2011, 3(4):1533-1540. doi: 10.1039/c0nr00735h [23] DING H, DU F, LIU P, et al.. DNA-carbon dots function as fluorescent vehicles for drug delivery[J]. ACS Applied Materials & Interfaces, 2015, 7(12):6889-6897. http://cn.bing.com/academic/profile?id=72916e880fc49ebacfacf7ebf3865ee4&encoded=0&v=paper_preview&mkt=zh-cn [24] MING H, MA Z, LIU Y, et al.. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Transactions, 2012, 41(31):9526-9531. doi: 10.1039/c2dt30985h [25] MIAO P, TANG Y G, WANG B D, et al.. Nuclease assisted target recycling and spherical nucleic acids gold nanoparticles recruitment for ultrasensitive detection of microRNA[J]. Electrochim Acta, 2016, 190:396-401. doi: 10.1016/j.electacta.2016.01.034 [26] MENG F Y, MIAO P, WANG B D, et al.; Identification of glutathione by voltammetric analysis with rolling circle amplification[J]. Analytica Chimica Acta, 2016, 943:58-63. doi: 10.1016/j.aca.2016.09.035 [27] LI Y R, CHEN X F, WANG B D, et al.. DNA tetrahedron and star trigon nanostructures for target recycling detection of nucleic acid[J]. Analyst, 2016, 141(11):3239-3241. doi: 10.1039/C6AN00762G [28] MIAO P, TANG Y G, WANG L. DNA Modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions[J]. ACS Applied Materials & Interfaces, 2017, 9(4):3940-3947. [29] MIAO P, YANG D W, CHEN X F, et al.. Voltammetric determination of tumor necrosis factor-alpha based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles[J]. Microchimica Acta, 2017, 184(10):3901-3907. doi: 10.1007/s00604-017-2419-5 [30] LIU T, YIN J A, WANG Y H, et al.. Construction of a specific binding peptide based electrochemical approach for sensitive detection of Zn2+[J]. Journal of Electroanalytical Chemistry, 2016, 783:304-307. doi: 10.1016/j.jelechem.2016.11.006 [31] 李腾飞, 李昳玮, 肖璐, 等.荧光可调控的碳量子点的电化学制备及性质研究[J].化学学报, 2014, 72:227-232. doi: 10.3866/PKU.WHXB201312161LI T F, LI Y W, XIAO L, et al.. Electrochemical preparation of color-tunable fluorescent carbon quantum dots[J]. Acta Chimica Sinica, 2014, 72:227-232.(in Chinese) doi: 10.3866/PKU.WHXB201312161 [32] MIAO P, WANG B D, YU Z Q, et al.. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification[J]. Biosensors and Bioelectronics, 2015, 63:365-370. doi: 10.1016/j.bios.2014.07.075 [33] ZHOU J, BOOKER C, LI R, et al.. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes(MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4):744-745. doi: 10.1021/ja0669070 [34] BAO L, ZHANG Z L, TIAN Z Q, et al.. Electrochemical tuning of luminescent carbon nanodots:from preparation to luminescence mechanism[J]. Advanced Materials, 2011, 23(48):5801-5806. doi: 10.1002/adma.v23.48 [35] SHINDE D B, PILLAI V K. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes[J]. Chemistry-A European Journal, 2012, 18(39):12522-12528. doi: 10.1002/chem.201201043 [36] SUN D, BAN R, ZHANG P H, et al.. Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64:424-434. doi: 10.1016/j.carbon.2013.07.095 [37] QIAO Z A, WANG Y, GAO Y, et al.. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chemical Communications, 2010, 46(46):8812-8814. doi: 10.1039/c0cc02724c [38] SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757. doi: 10.1021/ja062677d [39] HU S L, NIU K Y, SUN J, et al.. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry, 2009, 19(4):484-488. doi: 10.1039/B812943F [40] ZHU H, WANG X, LI Y, et al.. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chemical Communications, 2009, (34):5118-5120. doi: 10.1039/b907612c [41] ZHANG P, LI W, ZHAI X, et al.. A facile and versatile approach to biocompatible "fluorescent polymers" from polymerizable carbon nanodots[J]. Chemical Communications, 2012, 48(84):10431-10433. doi: 10.1039/c2cc35966a [42] WANG Q, LIU X, ZHANG L, et al.. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application[J]. Analyst, 2012, 137(22):5392-5397. doi: 10.1039/c2an36059d [43] WANG F, PANG S, WANG L, et al.. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chemistry of Materials, 2010, 22(16):4528-4530. doi: 10.1021/cm101350u [44] ZHU S, MENG Q, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 125(14):4045-4049. http://cn.bing.com/academic/profile?id=1d5f07975fecedfc2b5cb464f2935484&encoded=0&v=paper_preview&mkt=zh-cn [45] LI H, HE X, LIU Y, et al.. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011, 49(2):605-609. doi: 10.1016/j.carbon.2010.10.004 [46] PARK S Y, LEE H U, PARK E S, et al.. Photoluminescent green carbon nanodots from food-waste-derived sources:large-scale synthesis, properties, and biomedical applications[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3365-3370. http://cn.bing.com/academic/profile?id=455b453b10994d12e6707c136d472a3a&encoded=0&v=paper_preview&mkt=zh-cn [47] DENG J, LU Q, MI N, et al.. Electrochemical synthesis of carbon nanodots directly from alcohols[J]. Chemistry-A European Journal, 2014, 20(17):4993-4999. doi: 10.1002/chem.201304869 [48] MIAO P, TANG Y, HAN K, et al.. Facile synthesis of carbon nanodots from ethanol and their application in ferric(Ⅲ) ion assay[J]. Journal of Materials Chemistry A, 2015, 3(29):15068-15073. doi: 10.1039/C5TA03278D [49] QU S, WANG X, LU Q, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angewandte Chemie International Edition, 2012, 124(49):12381-12384. http://cn.bing.com/academic/profile?id=d1e58e77d2b952ef9d75e9538847d21b&encoded=0&v=paper_preview&mkt=zh-cn [50] RESCH GENGER U, GRABOLLE M, CAVALIERE-JARICOT S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9):763-775. doi: 10.1038/nmeth.1248 [51] ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical Communications, 2008, (41):5116-5118. doi: 10.1039/b812420e [52] BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38):6726-6744. doi: 10.1002/anie.200906623 [53] MIAO P, TANG Y G, WANG B D, et al.. Near-infrared Ag2S quantum dots-based DNA logic gate platform for miRNA diagnostics[J]. Analytical Chemistry, 2016, 88(15):7567-7573. doi: 10.1021/acs.analchem.6b01044 [54] YANG S T, WANG X, WANG H, et al.. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, 2009, 113(42):18110-18114. doi: 10.1021/jp9085969 [55] 张文宇, 常青, 周雨锋, 等.一步合成硫、氮共掺杂的碳量子点及其在Fe3+检测中的应用[J].发光学报, 2016, 37(4):410-415. http://www.doc88.com/p-5806900943515.htmlZHANG W Y, CHANG Q, ZHOU Y F, et al.. One-step synthesis of sulfur-and nitrogen-co-doped carbon quantum dots for Fe(Ⅲ) detection[J]. Chinese Journal of Luminescence, 2016, 37(4):410-415.(in Chinese) http://www.doc88.com/p-5806900943515.html [56] ZHENG H, WANG Q, LONG Y, et al.. Enhancing the luminescence of carbon dots with a reduction pathway[J]. Chemical Communications, 2011, 47(38):10650-10652. doi: 10.1039/c1cc14741b [57] GUO Z, GAI L, ZHOU J, et al.. Polybromopyrrole-derived nitrogen-containing polymer dots:Synthesis, optical properties, and insight into their fluorescence quenching by aromatic compounds[J]. Sensors and Actuators B:Chemical, 2016, 232:722-731. doi: 10.1016/j.snb.2016.04.047 [58] LIU Y, HAN S. Chemiluminescence ofnitrogen-doped carbon quantum dots for the determination of thiourea and tannic acid[J]. Food Analytical Methods, 2017, 10(10):3398-3406. doi: 10.1007/s12161-017-0911-5 [59] JIANG J, HE Y, LI S, et al.. Amino acids as the source for producing carbon nanodots:microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement[J]. Chemical Communications, 2012, 48(77):9634-9636. doi: 10.1039/c2cc34612e [60] WANG Z X, ZHENG C L, LI Q L, et al.. Electrochemiluminescence of a nanoAg-carbon nanodot composite and its application to detect sulfide ions[J]. Analyst, 2014, 139(7):1751-1755. doi: 10.1039/C3AN02097E [61] SUN Y P, WANG X, LU F, et al.. Doped carbon nanoparticles as a new platform for highly photoluminescent dots[J]. The Journal of Physical Chemistry C, 2008, 112(47):18295-18298. doi: 10.1021/jp8076485 [62] MIAO P, SHEN M, NING L, et al.. Functionalization of platinum nanoparticles for electrochemical detection of nitrite[J]. Analytical and Bioanalytical Chemistry, 2011, 399(7):2407-2411. doi: 10.1007/s00216-010-4642-3 [63] SHI W, WANG Q, LONG Y, et al.. Carbon nanodots as peroxidase mimetics and their applications to glucose detection[J]. Chemical Communications, 2011, 47(23):6695-6697. doi: 10.1039/c1cc11943e [64] RAY S, SAHA A, JANA N R, et al.. Fluorescent carbon nanoparticles:synthesis, characterization, and bioimaging application[J]. The Journal of Physical Chemistry C, 2009, 113(43):18546-18551. doi: 10.1021/jp905912n [65] SONG Y, FENG D, SHI W, et al.. Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts[J]. Talanta, 2013, 116:237-244. doi: 10.1016/j.talanta.2013.05.022 [66] MIAO P, LIU L, LI Y, et al.. A novel electrochemical method to detect mercury(Ⅱ) ions[J]. Electrochemistry Communications, 2009, 11(10):1904-1907. doi: 10.1016/j.elecom.2009.08.013 [67] HOU Y, LU Q, DENG J, et al.. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion[J]. Analytica Chimica Acta, 2015, 866:69-74. doi: 10.1016/j.aca.2015.01.039 [68] YAZID S N A M, CHIN S F, PANG S C, et al.. Detection of Sn(Ⅱ) ions via quenching of the fluorescence of carbon nanodots[J]. Microchimica Acta, 2013, 180(1-2):137-143. doi: 10.1007/s00604-012-0908-0 [69] ZHAO L, GENG F, DI F, et al.. Polyamine-functionalized carbon nanodots:a novel chemiluminescence probe for selective detection of iron(Ⅲ) ions[J]. RSC Advances, 2014, 4(86):45768-45771. doi: 10.1039/C4RA08071H [70] MIAO P, WANG B. D, YIN J, et al.. Electrochemical tracking hydrogen peroxide secretion in live cells based on autocatalytic oxidation reaction of silver nanoparticles[J]. Electrochemistry Communications, 2015, 53:37-40. doi: 10.1016/j.elecom.2015.02.007 [71] MENG F Y, ZHU X L, MIAO P. Study of autocatalytic oxidation reaction of silver nanoparticles and the application for nonenzymatic H2O2 assay[J]. Chemical Physics Letters, 2015, 635:213-216. doi: 10.1016/j.cplett.2015.06.068 [72] LIU S, YU B, ZHANG T. Nitrogen-doped carbon nanodots as a reducing agent to synthesize Ag nanoparticles for non-enzymatic hydrogen peroxide detection[J]. RSC Advances, 2014, 4(2):544-548. doi: 10.1039/C3RA44492A [73] ZHOU Y, XING G, CHEN H, et al.. Carbon nanodots sensitized chemiluminescence on peroxomonosulfate-sulfite-hydrochloric acid system and its analytical applications[J]. Talanta, 2012, 99:471-477. doi: 10.1016/j.talanta.2012.06.012 [74] MIAO P, TANG Y G, WANG B D, et al.. An aptasensor for detection of potassium ions based on RecJ(f) exonuclease mediated signal amplification[J]. Analyst, 2014, 139(22):5695-5699. doi: 10.1039/C4AN01350F [75] HAN K, LIU T, WANG Y H, et al.. Electrochemical aptasensors for detection of small molecules, macromolecules, and cells[J]. Reviews in Analytical Chemistry, 2016, 35(4):201-211. http://cn.bing.com/academic/profile?id=c289d827b2df2212071d1239ecea1645&encoded=0&v=paper_preview&mkt=zh-cn [76] YANG D W, TANG Y G, GUO Z Z, et al.. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy[J]. Molecular Bio. Systems, 2017, 13:1936-1939. http://cn.bing.com/academic/profile?id=2cc603ee3e16511018446dc02f88fb6c&encoded=0&v=paper_preview&mkt=zh-cn [77] XU B, ZHAO C, WEI W, et al.. Aptamer carbon nanodot sandwich used for fluorescent detection of protein[J]. The Analyst, 2012, 137(23):5483-5486. doi: 10.1039/c2an36174d [78] MIAO P, TANG Y G, MAO Z Q, et al.. Adamantane derivatives functionalized gold nanoparticles for colorimetric detection of MiRNA[J]. Particle & Particle Systems Characterization, 2017, 34(6). http://cn.bing.com/academic/profile?id=a58b08ca86da61156e825b51ad1170ff&encoded=0&v=paper_preview&mkt=zh-cn [79] MIAO P, WANG B D, HAN K, et al.. Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles[J]. Electrochemistry Communications, 2014, 47:21-24. doi: 10.1016/j.elecom.2014.07.013 [80] MIAO P, LIU L, NIE Y J, et al.. An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides[J]. Biosensors and Bioelectronics, 2009, 24(11):3347-3351. doi: 10.1016/j.bios.2009.04.041 [81] MIAO P, LIANG Z Q, LIU L, et al.. Fabrication of multi-functionalized gold nanoparticles and the application to electrochemical detection of nitrite[J]. Current Nanoscience, 2011, 7(3):354-358. doi: 10.2174/157341311795542345 [82] MIAO P, HAN K, LIN Y, et al.. Protein-gold nanoparticles interactions and its application for alkaline phosphatase assay[J]. Micro & Nano Letters, 2012, 7(9):914-917. http://cn.bing.com/academic/profile?id=0bf960336a187d6988e342914672e77c&encoded=0&v=paper_preview&mkt=zh-cn [83] QADDARE S H, SALIMI A. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform:A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level[J]. Biosensors and Bioelectronics, 2017, 89:773-780. doi: 10.1016/j.bios.2016.10.033 [84] NA N, LIU T, XU S, et al.. Application of fluorescent carbon nanodots in fluorescence imaging of human serum proteins[J]. Journal of Materials Chemistry B, 2013, 1(6):787-792. doi: 10.1039/C2TB00335J [85] ZHU A, LUO Z, DING C, et al.. A two-photon "turn-on" fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues[J]. Analyst, 2014, 139(8):1945-1952. doi: 10.1039/C3AN02086J [86] HSU P C, SHIH Z Y, LEE C H, et al.. Synthesis and analytical applications of photoluminescent carbon nanodots[J]. Green Chemistry, 2012, 14(4):917-920. doi: 10.1039/c2gc16451e [87] CHANDRA A, DESHPANDE S, SHINDE D B, et al.. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery[J]. ACS Macro Letters, 2014, 3(10):1064-1068. doi: 10.1021/mz500479k [88] SONG Y, SHI W, CHEN W, et al.. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells[J]. Journal of Materials Chemistry, 2012, 22(25), 12568-12573. doi: 10.1039/c2jm31582c [89] NANDI S, MALISHEV R, KOOTERY K P, et al.. Membrane analysis with amphiphilic carbon dots[J]. Chemical Communications, 2014, 50(71):10299-10302. doi: 10.1039/C4CC03504F [90] CHOI Y, KIM S, CHOI M H, et al.. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo[J]. Advanced Functional Materials, 2014, 24(37):5781-5789. doi: 10.1002/adfm.201400961 [91] WANG Q, HUANG X, LONG Y, et al.. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59:192-199. doi: 10.1016/j.carbon.2013.03.009 [92] HE L, WANG T, AN J, et al.. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. Cryst. Eng. Comm., 2014, 16(16):3259-3263. doi: 10.1039/c3ce42506a [93] TANG J, KONG B, WU H, et al.. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging[J]. Advanced Materials, 2013, 25(45):6569-6574. doi: 10.1002/adma.201303124 [94] WANG J, ZHANG Z, ZHA S, et al.. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density[J]. Biomaterials, 2014, 35(34):9372-9381. doi: 10.1016/j.biomaterials.2014.07.063 [95] GAO N, YANG W, NIE H, et al.. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery[J]. Biosensors and Bioelectronics, 2017, 96:300-307. doi: 10.1016/j.bios.2017.05.019