留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique

HE Xiao-ying DONG Jian HU Shuai HE Yan LV Ben-shun LUAN Xin-xin LI Chong 胡 安琪 HU Zong-hai GUO Xia

何晓颖, 董建, 胡帅, 何艳, 吕本顺, 栾信信, 李冲, 胡宗海, 郭霞. 采用BCB平整技术的高速850 nm垂直面发射激光器[J]. 中国光学(中英文), 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190
引用本文: 何晓颖, 董建, 胡帅, 何艳, 吕本顺, 栾信信, 李冲, 胡宗海, 郭霞. 采用BCB平整技术的高速850 nm垂直面发射激光器[J]. 中国光学(中英文), 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190
HE Xiao-ying, DONG Jian, HU Shuai, HE Yan, LV Ben-shun, LUAN Xin-xin, LI Chong, 胡 安琪, HU Zong-hai, GUO Xia. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190
Citation: HE Xiao-ying, DONG Jian, HU Shuai, HE Yan, LV Ben-shun, LUAN Xin-xin, LI Chong, 胡 安琪, HU Zong-hai, GUO Xia. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190

采用BCB平整技术的高速850 nm垂直面发射激光器

基金项目: 

国家自然科学基金资助项目 61335004

国家自然科学基金资助项目 61675046

国家自然科学基金资助项目 61505003

国家重大研发计划 2016YFB0400603

国家重大研发计划 2017YFB0400902

国家重大研发计划 2017YFF0104801

详细信息
    作者简介:

    何晓颖(1981-), 女, 湖北荆州人, 博士, 副教授, 2009年于华中科技大学获得博士学位, 主要从事半导体激光器、光纤激光器、石墨烯光电子器件等新型光电子器件的研究工作

    郭霞(1974—),女,山东青岛人,博士,教授,1996年于聊城大学获得学士学位,2003年于北京工业大学获得博士学位,主要从事半导体激光器、发光二极管等光电子器件方面的研究。E-mail:guox@bupt.edu.cn

  • 中图分类号: TN248.4

High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique

doi: 10.3788/CO.20181102.0190
Funds: 

National Natural Science Foundation of China 61335004

National Natural Science Foundation of China 61675046

National Natural Science Foundation of China 61505003

National Key R&D Program of China 2016YFB0400603

National Key R&D Program of China 2017YFB0400902

National Key R&D Program of China 2017YFF0104801

More Information
  • 摘要: 垂直腔面发射激光器因其具有低阈值、低功耗、可实现高速调制等优势,广泛地应用于光通信和光互连等领域。寄生电容是影响激光器的调制带宽的主要因素之一。本文通过采用低k值的苯并环丁烯(BCB)平整技术有效地降低了垂直腔面发射激光器的寄生电容。详细研究了BCB平整技术的最优工艺参数,为未来高速垂直腔面发射激光器的制造技术提供参考。低k值BCB平整垂直腔面发射激光器在7 μm氧化孔径下3 dB小信号调制带宽可达15.2 GHz。

     

  • Figure 1.  (a) Simulation results of small signal modulation response for VCSELs with BCB and SiO2 passivation. The parasitic cutoff frequency can reach to 17.8 GHz and 10.6 GHz for BCB and SiO2-passivated VCSEL, respectively. (b)The measured small signal modulation response for VCSELs with BCB and SiO2 passivation. The -3dB bandwidth is 15.2 GHz and 9.85 GHz with the oxide aperture of 7 μm@6 mA, respectively, which indicates the parasitic capacitance limits the modulation frequency of the devices

    Figure 2.  (a) Schematic cross-sectional structure of high-speed VCSEL devices. (b)Top-view image of the high-speed VCSEL with coplanar GSG electrode structure

    Figure 3.  (a) Relationship between spin speed and film thickness of BCB. (b)Difference in aperture diameter(Δd) between lithography and BCB patterns at various exposure times. (c)Top-view images of the thin BCB layer before dry etching and (d)after dry etching

    Figure 4.  (a) Static P-I-V characteristics of BCB-planarized VCSELs with a 5 μm and 7 μm oxide aperture at room temperature. (b)Electrical-luminescence spectrum for the VCSEL at room temperature and current injection of 10.0 mA

    Figure 5.  Small-signal modulation response at room temperature at different bias currents for the BCB-planarized VCSEL with (a)5 μm and (b)7 μm oxide aperture

    Figure 6.  (a) Plot of the resonance frequency for the VCSELs with 5 μm and 7 μm oxide aperture versus the square root of the current injection above the threshold current at room temperature. (b)Damping rate versus resonance frequency square for the VCSELs with 5 μm and 7 μm oxide aperture at room temperature

  • [1] 海一娜, 邹永刚, 田锟, 等.水平腔面发射半导体激光器研究进展[J].中国光学, 2017, 10(2):194-206. http://www.chineseoptics.net.cn/CN/abstract/abstract9460.shtml

    HAI Y N, ZOU Y G, TIAN K, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2):194-206. http://www.chineseoptics.net.cn/CN/abstract/abstract9460.shtml
    [2] 黄海华, 刘云, 杨晔, 等.850 nm锥形半导体激光器的温度特性[J].中国光学, 2013, 6(2):201-207. http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml

    HAI H H, LIU Y, YANG Y, et al. Temperature characteristics of 850 nm tapered semiconductor lasers[J]. Chinese Optics, 2013, 6(2):201-207. http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml
    [3] 戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体激光器及光栅耦合半导体激光器[J].中国光学, 2010, 3(5):415-431. http://www.chineseoptics.net.cn/CN/abstract/abstract8520.shtml

    QI X D, YE SH J, ZHANG N, et al. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5):415-431. http://www.chineseoptics.net.cn/CN/abstract/abstract8520.shtml
    [4] WESTBERGH P, GUSTAVSSON J S, HAGLUND A, et al.. High-speed, low-current-density 850 nm VCSELs[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):694-703. doi: 10.1109/JSTQE.2009.2015465
    [5] WESTBERGH P, GUSTAVSSON J S, KO? GEL B, et al.. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE J. Sel. Topics Quantum Electron., 2011, 17(6):1603-1613. doi: 10.1109/JSTQE.2011.2114642
    [6] LARISCH G, MOSER P, LOTT J A, et al.. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photon. Technol. Lett., 2016, 28(21):2327-2330. doi: 10.1109/LPT.2016.2592985
    [7] HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al.. High-speed VCSELs with strong confinement of optical fields and carriers[J]. J. Lightwave Technol., 2016, 34(2):269-277. doi: 10.1109/JLT.2015.2458935
    [8] MOSER P, LOTT J A, BIMBERG D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects[J]. IEEE J. Sel. Topics Quantum Electron., 2013, 19(4):1702212-1702212. doi: 10.1109/JSTQE.2013.2255266
    [9] WESTBERGH P, SAFAISINI R, HAGLUND E, et al.. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85℃[J]. IEEE Photon. Technol. Lett., 2013, 25(8):768-771. doi: 10.1109/LPT.2013.2250946
    [10] LUCOVSKY G, RAYNER JR G B. Microscopic model for enhanced dielectric constants in low concentration SiO2 -rich noncrystalline Zr and Hf silicate alloys[J]. Appl. Phys. Lett., 2000, 77(18):2912-2914. doi: 10.1063/1.1320860
    [11] OU Y, GUSTAVSSON J S, WESTBERGH P, et al.. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J]. IEEE Photon. Technol. Lett., 2009, 21(24):1840-1842. doi: 10.1109/LPT.2009.2034618
    [12] CHANG Y C, COLDREN L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):704-715. doi: 10.1109/JSTQE.2008.2010955
    [13] LI H, LOTT J A, WOLF P, et al.. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs[J]. IEEE Photon. Technol. Lett., 2015, 27(8):832-835. doi: 10.1109/LPT.2015.2393863
    [14] COLDREN L A, CORZINE S W, MASHANOVITCH M L. Diode Lasers and Photonic Integrated Circuits[M]. New Jersey, MD:John Wiley & Sons, 2012.
    [15] LI H, WOLF P, MOSER P, et al.. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J]. IEEE J. Quantum Electron., 2014, 50(8):613-621. doi: 10.1109/JQE.2014.2330255
    [16] MOSER P, LOTT J A, LARISCH G, et al.. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. J. Lightwave Technol., 2015, 33(4):825-831. doi: 10.1109/JLT.2014.2365237
    [17] LARSSON A, WESTBERGH P, GUSTAVSSON J, et al.. High-speed VCSELs for short reach communication[J]. Semicond. Sci. Technol., 2010, 26(1):014017. http://www.researchgate.net/publication/230988183_High-speed_VCSELs_for_short_reach_communication?ev=prf_cit
    [18] HAGLUND E P, KUMARI S, WESTBERGH P, et al.. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs[J]. IEEE Photon. Technol. Lett., 2016, 28(8):856-859. doi: 10.1109/LPT.2016.2514699
    [19] HAGLUND E P, WESTBERGH P, GUSTAVSSON J S, et al.. Impact of damping on high-speed large signal VCSEL dynamics[J]. J. Lightwave Technol, 2015, 33(4):795-801. doi: 10.1109/JLT.2014.2364455
  • 加载中
图(6)
计量
  • 文章访问数:  2601
  • HTML全文浏览量:  1100
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2017-12-16
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!