-
摘要: 由于其独特的大气敏感特性,太赫兹波在大气遥感领域起着越来越重要的作用。国际上太赫兹大气遥感技术发展方兴未艾。2004年,美国NASA发射AURA卫星,探测仪器中包括了具有两种极化的2.5 THz辐射计;2007年,欧空局ESA研制了Marschals外差式光谱仪,采用临边探测方式探测气体成分在亚毫米波段热辐射的高光谱。我国在轨气象卫星风云三号已经具备毫米波段辐射计,风云四号卫星是世界上首颗搭载太赫兹遥感仪的地球静止轨道气象卫星。针对我国大气遥感的现状,在概述国内外太赫兹遥感应用和技术的基础上,提出发展自主知识产权的大气遥感技术的思路;大力发展自主知识产权的太赫兹关键器件、太赫兹探测仪系统集成,研究太赫兹大气探测的新原理和反演新方法,整体提升我国在大气遥感领域的技术水平。Abstract: Terahertz waves play an increasingly important role in the field of atmosphere remote sensing due to its unique atmosphere sensitivity. Terahertz atmospheric remote sensing technology has been a research hotspot at the international level. In 2004, NASA launched AURA, which included 2.5THz radiometer with two polarization properties. In 2007, ESA developed the Marschals heterodyne spectrometer, which adopted limb scanning method to detect the hyperspectral spectra of gas components in sub-millimeter wave thermal radiation. Currently, China's in-orbit meteorological satellite Fengyun-Ⅲ is equipped with a millimeter-band radiometer, and Fengyun-Ⅳ is the world's first GEMS carrying terahertz remote sensing instrument. Based on the analysis of the application and technology of terahertz remote sensing at home and abroad, this paper puts forward the idea of developing remote sensing technology with independent intellectual property rights according to the current situation of atmospheric remote sensing in China.
-
Key words:
- terahertz /
- atmosphere remote sensing /
- cloud particles /
- radiometer
-
表 1 各频段辐射计与主要探测目标的关系
Table 1. The relationship between radiometer and main detection targets at each band
辐射计频段 主要探测目标 118 GHz O2 183 GHz H2O、HNO3、冰云、
压力切向分布、上对流层的水190 GHz H2O、HNO3 240 GHz CO、O3 325 GHz H2O 424 GHz O2 487 GHz O2 556 GHz H2O 640 GHz HCl、ClO、N2O、H2O 2.5 THz OH -
[1] YAO J Q, WANG J L, ZHONG K, et al.. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics·Laser, 2010, 21(10):1582-1588.(in Chinese) [2] PETER H S. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928. doi: 10.1109/22.989974 [3] ZHANG J Q, XUE CH, GAO G, et al.. Development and trend of cloud and aerosol optical remote sensing instrument[J]. Chinese Optics, 2015, 8(5):679-698. doi: 10.3788/co. [4] HU X H, LIU S T, PAN ZH D, et al.. The development of spaceborne shimmer detection instrument and its data application[J]. Chinese Optics, 2015, 8(3):350-359. doi: 10.3788/co. [5] KLEIN U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region[C]. The 17th Int Symp on Space THz Technology, Paris, France, 2006:21-28. [6] SOHN B J, CHUNG E S, SCHMETZ J, et al.. Estimating upper-tropospheric water vapor from SSM/T-2satellite measurements[J]. J. Appl. Meteor, 2003, 42:488-504. doi: 10.1175/1520-0450(2003)042<0488:EUTWVF>2.0.CO;2 [7] CLERBAUX C, TURQUETY S, COHEUR P. Infrared remote sensing of atmospheric composition and air quality:towards operational applications[J]. Comptes Rendus Geoscience, 2010, 342(4):349-356. [8] WANG W, DONG J H, MENG Q Y. Development and trend of visible light remote sensing camera for Mars exploration[J]. Chinese Optics, 2014, 7(2):208-214. [9] YING Y B, WANG J P, JIANG H Y. Inspecting diameter and defect area of fruit with machine vision[J]. Transactions of the CSAE, 2002, 18(5):216-220. [10] WATERS J W, READ W G, FROIDEVAUX L, et al.. The UARS and EOS microwave limb sounder(MLS) experiments[J]. Journal of the Atmospheric Sciences, 1998, 56:194-218. [11] WATERS J W, PECKHAM G E. The microwave limb sounder(MLS) experiments for UARS and EOS[J]. The International Society for Optical Engineering, 1991:543-546. [12] PUMPHREY H C, CLARK H L, HARWOOD R S. Lower stratospheric water vapor measured by UARS MLS[J]. Geophysical Research Letters, 2000, 27(12):1691-1694. doi: 10.1029/1999GL011339 [13] BARATH F T, CHAVEZ M C, COFIELD R E, et al.. The upper atmosphere research satellite microwave limb sounder instrument[J]. J. Geophys Res, 1993, 98(10):751-762. [14] BARON P, RICAUD P, et al.. Studies for the Odin sub-millimetre radiometer.Ⅱ:Retrieval methodology[J]. Canadian Journal of Physics, 2002, 80(4):341-356. doi: 10.1139/p01-150 [15] URBAN J, LAUTIE N, LE FLOCHMOEZ E, et al.. Odin/SMR limb observations of stratospheric trace gases:validation of N2O[J]. Journal of Geophysical Research, 2005, 110:D09301-D09320. https://core.ac.uk/display/70561256 [16] LI X Y, CHEN L F, SU L, et al.. Development of submillimeter wave edge detection[J]. Journal of Remote Sensing, 2013, 6:1325-1344. [17] YANG ZH D, LU N M, SHI J M, et al.. Overview of FY-3 satellite payload and ground application systems[J]. Meteorological Science and Technology, 2013, 4:6-12. http://www.sciencedirect.com/science/article/pii/B9780127999487000050 [18] DONG Y H. FY-4 meteorological satellite and its application prospect[J]. Shanghai Aerospace, 2016, 2:1-8. [19] FRANKLIN E K, STEVEN J W, ANDREW J H, et al.. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research, 2002, 107(D3):4028-4048. doi: 10.1029/2001JD000709 [20] VANEK M D, NOLT I G, TAPPAN N D, et al.. Far-infrared sensor for cirrus(FIRSC):an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl. Opt., 2001, 40(13):2169-2176. doi: 10.1364/AO.40.002169 [21] EVANS K F, WANG J R, RACETTE P E, et al.. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society, 2005, 44:839-859. https://espo.nasa.gov/attrex/content/Ice_Cloud_Retrievals_and_Analysis_with_the_Compact_Scanning_Submillimeter_Imaging_Radiometer [22] MARAZITA S M, BISHOP W L, HESLER J L, et al.. Integrated Ga As Schottky mixers by spin on dielectric wafer bonding[J]. IEEE Transactions on Electron Devices, 2000, 47(6):1152-1157. doi: 10.1109/16.842956 [23] MARSH S, ALDERMAN B, MATHESON D, et al. Design of low-cost 183 GHz subharmonic mixers for commercial applications[J]. IET Circuits, Devices and Systems, 2007, 1(1):1-6 doi: 10.1049/iet-cds:20060212 [24] TESSMANN A, LEUTHER A, SEHWOERER C, et al. Acoplanar 94 GHz low-noise amplifier MMIC using 0.07μm. metamorphie cascode HEMTs[C]. IEEE MTT-S International Microwave Symposium Digest, IEEE, 2003:1581-1584. [25] BRYERTON E W, MEI X, KIM Y M, et al.. A W-band Low-Noise Amplifier with 22K noise temperature[C]. IEEE MTT-S International Microwave Symposium Digest, Boston, USA, 2009:681-684. [26] LU D R, HSU Y C, KAO J C, et al.. A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier[C]. IEEE MTT-S International Microwave Symposium Digest, Montreal, Canada, IEEE, 2012:1-3. [27] HROBAK M, STERNS M, SCHRAMM M, et al.. Planar zero bias Schottky diode detector operating in the E-and W-band[C]. 2013 European Microwave Conference(EuMC), IEEE, 2013:179-182. [28] LI S. Development of millimeter wave geophone[D]. Chengdu:University of Electronic Science and technology of China, 2008:59-77. [29] XUE W. W band broadband direct detection receiving front-end[D]. Chengdu:University of Electronic Science and technology of China, 2013:39-50. [30] AUSTON D H, SMITH P R. Cherenkov radiation from femtosecond optical pulses in elect ro-optic media[J]. Appl. Phys. Lett., 1984, 53(16):1555-1558. doi: 10.1103/PhysRevLett.53.1555 [31] FATTINGER CH, GRISCHKOWSKY D. Point source terahertz optics[J]. Appl. Phys. Lett., 1988, 53(16):1480-1482. doi: 10.1063/1.99971 [32] LEITENSTORFER S, HUNSCHE J, SHAH M C, et al.. Detectors and sources for ultrabroadband electro-optic sampling:experiment and theory[J]. Appl. Phys. Lett., 1999, 74(11):1516-1518. doi: 10.1063/1.123601 [33] KONO S, TANI M, GU P, et al.. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses[J]. Appl. Phys. Lett., 2000, 77(25):4104-4106. doi: 10.1063/1.1333403 [34] HAJENIUS M. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer[J]. Phys. Rev. Lett., 2006, 100(7):074507. https://repository.tudelft.nl/islandora/object/uuid:3c930069-6427-4fb0-a113-88758172c003/?collection=research [35] SEMENOV A D, HUBERS H W, RICHTER H. Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers[J]. IEEE Appl. Superconductivity, 2003, 13(2):168-171. doi: 10.1109/TASC.2003.813672 [36] WHYBORN N D. Heterodyne instrument for FIRST(HIFI):preliminary design[J]. SPIE, 1998, 3357:336-347. [37] KOMIYAMA S, ASTAFIEV O, ANTONOV V V, et al.. A single-photon detector in the far-infrared range[J]. Nature, 2000, 403(6768):405-407. doi: 10.1038/35000166 [38] ASTAFIEV O, KOMIYAMA S, KUT SUWA T, et al.. Single-photon detector in the microwave range[J]. Phys. Rev. Lett., 2002, 80(22):4250-4252.