-
摘要: 光学微透镜阵列在光学系统中的应用广泛,需求量大,而玻璃模压成形技术是最高效的微透镜阵列量产加工方法,具有精度高,一致性好,生产成本低等特点,有重要的应用研究价值。本文介绍了光学微透镜阵列的设计原理,模具制造技术,模压成形技术及相应检测技术;重点介绍了微透镜阵列模压成形试验与有限元仿真研究的最新进展;最后对微透镜模压成形发展前景进行了展望,包括微透镜阵列模压材料,模具表面镀层技术及超声复合加工技术在微透镜阵列模压成形中的应用等。Abstract: The optical microlens array is widely used in the optical system with high demand. The glass molding technology is the most efficient methods of mass production and processing of microlens array with characteristics of high precision, good consistency and low production cost, which has important application and research value. In this paper, the design principle of optical microlens array, as well as mold manufacturing technology, glass molding technology and the corresponding detection technology is introduced. The latest development of microlens array molding test and FEM simulation are mainly discussed. The development of microlens molding, including the material for microlens array molding, the mold surface coating technology, and the application of ultrasonic composite processing technology in the microlens array molding is prospected at the end of this paper.
-
属性 L-BAL35(OharaInc) K-PG325(SUMITA Optical Glass, Inc) 转变温度Tg/℃ 527 288 屈服温度At/℃ 567 317 软化温度SP/℃ 619 325 热膨胀系数α(×10-6/℃) 6.6(-30~70 ℃) 14.3(-30~70 ℃) 8.1(100~300 ℃) 16.5(50~200 ℃) 传导率k(W/(m·K)) 1.126 0.748 弹性模量E(×109N/m2) 100.8 64.2 泊松比v 0.247 0.265 表 2 碳化钨材料的物理参数
Table 2. Properties of Tungsten carbide
化学式 WC 摩尔质量/(g·mol-1) 195.85 外观 Grey-black lustrous solid 密度/(g·cm3) 15.6 熔点/℃ 2 785~2 830 沸点/℃(at 0.101 3 MPa) 6 000 -
[1] CHOI K, KIM J, LIM Y, et al.. Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array[J]. Optics Express, 2005, 13(26):10494-502. doi: 10.1364/OPEX.13.010494 [2] KIM D H, ERDENDBAT M U, KWON K C, et al.. Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array[J]. Applied Optics, 2013, 52(34):8411-8. doi: 10.1364/AO.52.008411 [3] KIM Y, PARK J H, CHOI H, et al.. 53.4:Viewing-angle-enhanced 3-D integral imaging system using a curved lens array[J]. Optics Express, 2004, 12(3):421-9. doi: 10.1364/OPEX.12.000421 [4] KHANNA H K, SHARMA D D, LAROIYA S C. Microlens arrays for integral imaging system[J]. Applied Optics, 2006, 45(36):9066-78. doi: 10.1364/AO.45.009066 [5] 彭玉颜, 周雄图, 张永爱, 等.用于集成成像3D显示的曲面微透镜阵列设计与仿真[J].光子学报, 2016, 45(3):149-154. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201603027.htmPENG Y Y, ZHOU X T, ZHANG Y A, et al.. Design and simulation of curved microlens array for integral imaging 3D display[J]. Acta Photonica Sinica, 2016, 45(3):149-154.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201603027.htm [6] 袁艳, 周宇, 胡煌华.光场相机中微透镜阵列与探测器配准误差分析[J].光子学报, 2010, 39(1):123-126. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201001030.htmYUAN Y, ZHOU Y, HU H H. Registration error analysis for microlens array and photosonser in light field camera[J]. Acta Photonica Sinica, 2010, 39(1):123-126.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201001030.htm [7] 钟可君, 高益庆, 李凤, 等.微透镜阵列提高LED多芯片封装取光效率的仿真[J].半导体光电, 2013, 34(3):432-435. http://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201303020.htmZHONG K J, GAO Y Q, LI F, et al.. Simulation on enhancement of light extraction efficiency of multi-chips LED array package with micro-lens array[J]. Semiconductor Optoelectronics, 2013, 34(3):432-435.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201303020.htm [8] 崔崧, 高应俊, 阮驰, 等.一种新型微透镜阵列成象式投影光刻系统的研究[J].光子学报, 2002, 31(6):769-773. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200206029.htmCUI S, GAO Y J, RUAN CH, et al.. A microlens projection photolithographic system[J]. Acta Photonica Sinica, 2002, 31(6):769-773.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200206029.htm [9] 庄孝磊, 周芳, 陈林森.微透镜阵列光扩散片特性研究及制备[J].苏州大学学报:自然科学版, 2009, 25(4):48-52. http://www.cnki.com.cn/Article/CJFDTOTAL-SDXK200904011.htmZHUANG X L, ZHOU F, CHEN L S. The research of micro-lens array diffuser and its fabrication[J]. J. Suzhou University:Natural Science Edition, 2009, 25(4):48-52.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDXK200904011.htm [10] 陈四海, 李毅.衍射微透镜阵列的光学性能研究及测试[J].激光与光电子学进展, 2000, 6:13-18. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200006003.htmCHEN S H, LI Y. Optical properties theory and measurement of diffractive microlens arrays[J]. Laser & Optronics Progress, 2000, 6:13-18.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200006003.htm [11] 殷智勇, 汪岳峰, 贾文武, 等.基于微透镜阵列光束均匀化的傅里叶分析[J].激光与红外, 2012, 42(2):119-123. http://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201202002.htmYIN ZH Y, WANG Y F, JIA W W, et al.. Fourier analysis of light beam uniformity based on the microlens array[J]. Laser & Infrared, 2012, 42(2):119-123.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201202002.htm [12] 刘志辉, 杨欢, 石振东, 等.衍射微透镜阵列用于面阵半导体激光光束匀化[J].中国激光, 2014(1):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201401005.htmLIU ZH H, YANG H, SHI ZH D, et al.. Homogenization of the semiconductor laser planar array using diffractive microlens array[J]. Chinese J. Lasers, 2014(1):21-25.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201401005.htm [13] 于双双, 史宣, 杜吉, 等.基于二维微透镜阵列增大手术显微镜出瞳直径方法研究[J].红外与激光工程, 2014, 43(10):3342-3346. doi: 10.3969/j.issn.1007-2276.2014.10.030YU SH SH, SHI X, DU J, et al.. 2D microlens array-based surgical microscope in optical system's exit pupil expander[J]. Infrared and Laser Engineering, 2014, 43(10):3342-3346.(in Chinese) doi: 10.3969/j.issn.1007-2276.2014.10.030 [14] BACHMANN F, LOOSEN P, POPRAWE R. High Power Diode Lasers[M]. New York:Springer, 2007. [15] SUN H. Laser diode beam basics, manipulations and characterizations[J]. Springerbriefs in Physics, 2012. doi: 10.1007/978-94-007-4664-0 [16] 张占强, 张岩.基于微透镜阵列的光场成像系统[J].首都师范大学学报(自然科学版), 2016, 37(1):15-19. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710007&dbname=CJFDPREPZHANG ZH Q, ZHANG Y. Light field imaging with micro lens array[J]. J. Capital Normal University(Natural Sciences Edition), 2016, 37(1):15-19.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710007&dbname=CJFDPREP [17] 张健, 辛悦, 刘伟奇, 等.基于微透镜阵列的三维数字成像[J].光学精密工程, 2009, 7(7):1701-1706. http://youxian.cnki.com.cn/yxdetail.aspx?filename=GXXB20170920008&dbname=CAPJ2015ZHANG J, XIN Y, LIU W Q, et al.. Three-dimensional digital imaging based on microlens array[J]. Opt.d Precision Eng., 2009, 7(7):1701-1706.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=GXXB20170920008&dbname=CAPJ2015 [18] 郝劲波, 忽满利, 李林森, 等.基于微透镜阵列的实时三维物体识别[J].光子学报, 2007, 36(11):2008-2012. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200711011.htmHAO J B, HU M L, LI L, et al.. Real-time three-dimensional object recognition with microlens array[J]. Acta Photonica Sinica, 2007, 36(11):2008-2012.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200711011.htm [19] YUAN Y, ZHOU Y, HUANG-HUA H U. Registration error analysis for microlens array and photosonser in light field camera[J]. Guangzi Xuebao/acta Photonica Sinica, 2010, 39(1):123-126. doi: 10.3788/gzxb [20] 刘倩. 基于微透镜阵列的红外多目标/背景复合系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014083075.htmLIU Q. Research on infraed multi-target and background compounding system based on microlens array[D]. Harbin:Harbin Institute of Technology, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-1014083075.htm [21] HUANG C, CHEN H, LI J, et al.. System design and description of infrared simulator system based on the multidimensional flight table[J]. SPIE, 2008, 7276:72760M-72760M-8. http://adsabs.harvard.edu/abs/2008SPIE.7276E..21H [22] SAXENA K, JAIN V K, MEHTA D S. A review on the light extraction techniques in organic electroluminescent devices[J]. Optical Materials, 2009, 32(1):221-233. doi: 10.1016/j.optmat.2009.07.014 [23] kwon h, yee y, jeong c h, et al.. A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes[J]. J. Micromechanics & Microengineering, 2008, 18(6):1192-1192. http://oz.nthu.edu.tw/~d9511814/samid/uTAS2007-2EK5P.pdf [24] PENG H, HO Y L, YU X J, et al.. Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment[J]. J. Display Technology, 2005, 1(2):278-282. doi: 10.1109/JDT.2005.858944 [25] 蒋小平, 刘德森, 张凤军, 等.一种掩埋式复眼微透镜阵列[J].光电子·激光, 2011, 23(8):1143-1146. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201108007.htmJIANG X P, LIU D S, ZHANG F J, et al.. A compound eye simulated by buried microlens array[J]. J. Optoelectronics & Laser, 2011, 23(8):1143-1146.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201108007.htm [26] 李向红. 新型仿生复眼制备及测试研究[D]. 中北大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10110-1013184424.htmLI X H. Manufacturing and testing research of new bionic compound eyes[D]. North University of China, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10110-1013184424.htm [27] 杨元华, 陈时锦, 程凯, 等.超精密机械加工技术在微光学元件制造中的应用[J].航空精密制造技术, 2005, 4:10-12. doi: 10.3969/j.issn.1003-5451.2005.01.003YANG Y H, CHEN SH J, CHENG K, et al.. Application of ultra precision machining to the manufacture of micro-optical components[J]. Aviation Precision Manufacturing Technology, 2005, 4:10-12.(in Chinese) doi: 10.3969/j.issn.1003-5451.2005.01.003 [28] BRINKSMEIER E, PREUSS W, SCHMUTZ J. Manufacturing of microstruc-tures by diamondmachiningin Progress in Precision Engineering andNanotechnology[C], Proc.9th Int. Proc. Engng. Seminar, Braunschweig, Germany 1997:503-507. [29] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25nm vias and trenches in polymer[J]. Applied Physics Letters, 1995, 67(21):3114-3116. doi: 10.1063/1.114851 [30] ISHⅡ Y, TANIGUCHI J. Fabrication of three-dimensional nanoimprint mold usinginorganic resist in low accelerating voltage electron beam lithography[J]. Microelectronic Engineering, 2007, 84(5):912-915. https://www.intechopen.com/books/lithography/three-dimensional-nanoimprint-lithography-using-inorganic-electron-beam-resist [31] REINSPACH J, LINDBLOM M, VON HOFSTEN O, et al.. Cold-developed e-beam-patterned ZEP 7000 for fabrication of 13 nm nickel zone plates[J]. J. Vacuum Science & Technology, 2009, 27(6):2593-2596. http://www.nature.com/cited/cited.html?doi=10.1038/nature03719 [32] 佟军民, 胡松, 董小春, 等.工件台移动直线性对掩模移动曝光的影响[J].光电工程, 2007, 34(11):55-60. doi: 10.3969/j.issn.1003-501X.2007.11.012TONG J M, HU S, DONG X CH, et al.. Effect of stage moving linear error on exposure in mask moving technique[J]. Opto-Electronic Engineering, 2007, 34(11):55-60.(in Chinese) doi: 10.3969/j.issn.1003-501X.2007.11.012 [33] 阎嫦玲, 鲁平, 刘德明, 等.与光纤阵列耦合的微透镜阵列设计与损耗分析[J].光电子·激光, 2006, 17(9):1043-1047. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200609003.htmYAN C L, LU P, LIU D M, et al.. Design of micro lens arrays coupling with fiber arrays and analysis of the coupling loss[J]. J. Optoelectronics·Laser, 2006, 17(9):1043-1047.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200609003.htm [34] SMITH H I, SPEARS D L, BERNACKI S E. X-ray lithography:a complementary techniqueto electron beam lithography[J]. J. Vacuum Science and Technology, 1973, 10(6):913-917. doi: 10.1116/1.1318514 [35] JUNARSA I, NEALEY P F. Fabrication of masters for nanoimprint, step and flash, and soft lithography using hydrogen silsesquioxane and X-ray lithography[J]. J. Vacuum Science & Technology, 2004, 22(6):2685-2690. [36] LIU L, LOH N H, TAY B Y, et al.. Preparation and characterization of micro components fabricated by micro powder injection molding[J]. Materials Characterization 2011, 62(6):615-620. doi: 10.1016/j.matchar.2011.04.009 [37] YI A Y, JAIN A. Compression molding of aspherical glass lenses-a combined experimental and numerical analysis[J]. J. American Ceramic Society, 2005; 88(3):579-586. doi: 10.1111/jace.2005.88.issue-3 [38] KOLAŘÍK J, PEGORETTI A. Proposal of the Boltzmann-like superposition principle for nonlinear tensile creep of thermoplastics[J]. Polymer Testing, 2008, 27(5):596-606. doi: 10.1016/j.polymertesting.2008.03.002 [39] BARBERO E J. Time-temperature-age superposition principle for predicting long-term response of linear viscoelastic materials-creep and fatigue in polymer matrix composites-2[J]. Creep & Fatigue in Polymer Matrix Composites, 2011:48-69. https://search.library.utoronto.ca/details?7409915 [40] JALOCHA D, CONSTANTINESCU A, NEVIERE R. Revisiting the identification of generalized Maxwell models from experimental results[J]. International J. Solids & Structures, 2015, 67:169-181. http://www.doc88.com/p-7458222346493.html [41] 张勇, 张斌珍, 吴淑娟, 等.主光轴平行于基底的微透镜阵列制作与测试[J].微纳电子技术, 2013, 50(1):47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201405007.htmZHANG Y, ZHANG B ZH, WU SH J, et al.. Fabrication and measurement of microlens arrays with primary optical axis paralleled to wafers[J]. Micronanoelectronic Technology, 2013, 50(1):47-51.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201405007.htm [42] YAN X, YANG J, XUE B, et al.. Design of the microlens arrays coupling with imaging fiber bundle[J]. Optoelectronics Letters, 2013, 9:169-172. doi: 10.1007/s11801-013-3016-4 [43] CHEN W, ZHANG X, LIU X, et al.. Optical design and simulation of a compact multi-aperture camera based on a freeform microlens array[J]. Optics Communications, 2015, 338:300-306. doi: 10.1016/j.optcom.2014.10.029 [44] 柯才军. 微透镜阵列的设, 计制作及与CCD的集成技术[D]. 华中科技大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10487-2006041217.htmKE C J. Research on design, fabrication of microlens array and integration between microlens arrays and CCD image sensors[D]. Huazhong University of Science & Technology, 2005.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-2006041217.htm [45] TREMAIN D E, MEI K K. Application of the unimoment method to scattering from periodic surfaces[J]. J. Opt. Soc. Am., 1978, 68(6):775-783. doi: 10.1364/JOSA.68.000775 [46] PENG S T, TAMIR T, BERTONI H L. Theory of periodic dielectric waveguides[J]. IEEE Trans. Microwave Theory Tech., 1975, 23(1):123-133. doi: 10.1109/TMTT.1975.1128513 [47] MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of planar grating diffraction[J]. J. Opt. Soc. Am., 1981, 71(7):811-818. doi: 10.1364/JOSA.71.000811 [48] 唐勇, 李玉瑶.ZEMAX在光学设计外形尺寸计算中的应用[J].长春理工大学学报, 2009(2):193-196. http://www.cnki.com.cn/Article/CJFDTOTAL-CGJM200902005.htmTANG Y, LI Y Y. ZEMAX's application in dimension calculation of optical design[J]. J. Changchun University of Science and Technology(Natural Science Edition), 2009(2):193-196.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-CGJM200902005.htm [49] LI L, ALLEN Y Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera[J]. Applied Optics, 2012, 51(12):1843-1852. doi: 10.1364/AO.51.001843 [50] ZHOU T F, YAN J W, MASUDA J, et al.. Ultraprecision mass fabrication of aspherical fresnel lens by glass molding press[J]. Advanced Materials Research, 2011, 325:713-718. doi: 10.4028/www.scientific.net/AMR.325 [51] ZHOU T, YAN J, MASUDA J, et al.. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. J. Materials Processing Technology, 2009, 209(9):4484-4489. doi: 10.1016/j.jmatprotec.2008.10.030 [52] GMP TOSHIBA MACHINE. http://www.toshiba-machine.co.jp/cn/product/nano/lineup/gmp/index.html[EB/OL] [2016-08-15]. [53] 尹韶辉, 张乐贤, 陈逢军, 等.小口径非球面加工技术及装备综述[J].光学技术, 2013, 2:103-111. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201302004.htmYIN SH H, ZHANG X L, CHEN F J, et al.. Review of mechining technology and equipment foe small aspheric surface[J]. Optical Technology, 2013, 2:103-111.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201302004.htm [54] 尹韶辉, 王玉方, 朱科军, 等.微小非球面玻璃透镜超精密模压成型数值模拟[J].光子学报, 2010, 39(11):2020-2024. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201011022.htmYIN SH H, WANG Y F, ZHU K J, et al.. Numerical simulation of ultraprecision glass molding for micro aspherical glass lens[J]. Acta Photonica Sinica, 2010, 39(11):2020-2024.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201011022.htm [55] YI A Y, JAIN A. Compression molding of aspherical glass lenses-a combined experimental and numerical analysis[J]. J. American Ceramic Society, 2005, 88(3):579-586. doi: 10.1111/jace.2005.88.issue-3 [56] KOLAŘÍK J, PEGORETTI A. Proposal of the Boltzmann-like superposition principle for nonlinear tensile creep of thermoplastics[J]. Polymer Testing, 2008, 27(5):596-606. doi: 10.1016/j.polymertesting.2008.03.002 [57] OHARA CORPORATION.http://www.ohara-inc.co.jp/jp/product/electronics/index.html[EB/OL].[2016-08-01]. [58] 株式会社住田光学ガラスhttp://www.sumita-opt.co.jp/ja/[EB/OL]. [2016-08-10]. [59] BARBERO E J. 2-Time-temperature-age superposition principle for predicting long-term response of linear viscoelastic materials[J]. Creep & Fatigue in Polymer Matrix Composites, 2011:48-69. [60] JALOCHA D, CONSTANTINESCU A, NEVIERE R. Revisiting the identification of generalized Maxwell models from experimental results[J]. International J. Solids & Structures, 2015, 67:169-181. http://www.doc88.com/p-7458222346493.html [61] HAYAT T, KHAN M, ASGHAR S. On the MHD flow of fractional generalized Burgers' fluid with modified Darcy's law[J]. Acta Mechanica Sinica, 2007, 23(3):257-261. doi: 10.1007/s10409-007-0078-1 [62] ANURAG J, YI A Y. Numerical modeling of viscoelastic stress relaxation during glass lens forming process[J]. J. American Ceramic Society, 2005, 88(88):530-535. [63] LIPATOV Y S. Viscoelasticity of polymeric composites containing dispersed and fibrous fillers[J]. Mechanics of Composite Materials, 1981, 16(5):541-553. doi: 10.1007/BF00610179 [64] YAN J, OOWADA T, ZHOU T, et al.. Precision machining of microstructures on electroless-plated NiP surface for molding glass components[J]. J. Materials Processing Technology, 2009, 209(10):4802-4808. doi: 10.1016/j.jmatprotec.2008.12.008 [65] ZHOU T, YAN J, MASUDA J, et al.. Investigation on shape transferability in ultraprecision glass molding press for microgrooves[J]. Precision Engineering, 2011, 35(2):214-220. doi: 10.1016/j.precisioneng.2010.09.011 [66] 关佳亮, 陈志德, 曹成国, 等.大直径菲涅尔透镜模具加工发展现状及展望[J].机械设计与制造, 2012, 8:37-40. doi: 10.3969/j.issn.1001-3997.2012.02.015GUAN J L, CHEN ZH D, CAO CH G, et al.. Development status and prospects of large diameter Fresnel lens mould machining[J]. Manufacturing Technology & Machine Tool, 2012, 8:37-40. (in Chinese) doi: 10.3969/j.issn.1001-3997.2012.02.015 [67] 王泽彪. 微小非球面碳化钨模具的斜轴磨削及超声抛光工艺研究[D]. 长沙: 湖南大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10532-1013171214.htmWANG Z B. Inclined axis grinding for WC micro aspheric mould and ultrasonic vibration assisted finishing properties study[D]. Changsha:Hunan Uinversity, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10532-1013171214.htm [68] CARDARELLI F. Materials handbook:a concise desktop reference[J]. Materials & Design, 2001, 22(3):237-237. http://www.springer.com/us/book/9781846286681 [69] FIRESTONE G C, YI A Y. Precision compression molding of glass microlenses and microlens arrays-an experimental study[J]. Applied Optics, 2005, 44(29):6115-22. doi: 10.1364/AO.44.006115 [70] 王美成, 廖广兰, 史铁林.小型非球面光学元件测量技术研究[J].计测技术, 2007, 27(4):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HKJC200704002.htmWAN M CH, LIAO G L, SHI T L. Research on the measurement of small optical element with aspheric surface[J]. Metrology & Measurement Technology, 2007, 27(4):1-4.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKJC200704002.htm [71] ROKICKI R, HAIDER W, HRYNIEWICZ T. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells[J]. J. Materials Science Materials in Medicine, 2012, 23(9):2127-39. doi: 10.1007/s10856-012-4696-1 [72] YOKAICHIYA M, FUNABASHI T, TAKAYA Y. The high precision measurement of the minute shape by the UA3P series[C]. JSPE Semestrial Meeting:The Japan Society for Precision Engineering, 2011:878-879. [73] 吉住, 恵一. 超高精度三次元測定機UA3Pによる自由曲面の測定-自由曲面を10万分の1ミリメートル精度で測定[J]. Optical Alliance, 2008, 19: 32-37. [74] WEBER K, FENDL D, HEIN F, et al.. Sperm evaluation by 3D laser scanning microscopy(Olympus LEXT Ols4000)[J]. Toxicology Letters, 2013, 229(3):228-228. [75] 潘永强, 吴振森, 杭凌侠, 等.多层介质薄膜膜层间界面粗糙度及光散射[J].红外与激光工程, 2009, 38(3):433-436. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200903014.htmPAN Y Q, WU ZH S, HANG L X, et al.. Interface roughness of multilayer dielectric optical thin film[J]. Infrared and Laser Engineering, 2009, 38(3):433-436.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200903014.htm [76] ZHOU T, YAN J, LIANG Z, et al.. Development of polycrystalline Ni-P mold by heat treatment for glass microgroove forming[J]. Precision Engineering, 2014, 39:25-30. https://keio.pure.elsevier.com/ja/publications/development-of-polycrystalline-ni-p-mold-by-heat-treatment-for-gl [77] XIE J, ZHOU T, LIU Y, et al.. Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing[J]. Precision Engineering, 2016, 46:270-277. doi: 10.1016/j.precisioneng.2016.05.007 [78] XIE J Q, ZHOU T F, LIU Y, et al.. The Effects of Ultrasonic Vibration in Hot Pressing for Microgrooves[C]. Materials Science Forum, 2016, 861:121-126. [79] 李祥明, 邵金友, 丁玉成, 等.基于空间调制电场诱导去润湿的曲率可控微透镜阵列制造[J].中国科技论文在线, 2014. doi: 10.3969/j.issn.2095-2783.2014.01.016LI X M, SHAO J Y, DING Y CH, et al.. Fabrication of microlens arrays with controlable curvature based on electrically induced dewetting by spatially modulcated electricfiled[J]. Sciencepaper Online, 2014.(in Chinese) doi: 10.3969/j.issn.2095-2783.2014.01.016 [80] 洪水金, 常洪龙, 寻文鹏, 等.基于PDMS薄膜的微透镜制作方法[J].微纳电子技术, 2014(4):257-261. http://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201404009.htmHONG SH J, CHANG H L, XUN W P, et al.. A fabrication method for micro lens based on the PDMS menbrance[J]. Micronanoelectronic Technology, 2014(4):257-261.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201404009.htm [81] NAKAI J. Colored microlens array and manufacturing method for colored microlens array, color solid-state image capturing device and manufacturing method for color solid-state image capturing device, color display apparatus and manufacturing method for color display:US, 8274031 B2[P]. 2012-09-25 [82] 孙鸿达. 用于曲面复眼成像系统的啁啾微透镜阵列[D]. 厦门大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10384-1014223200.htmSUN H D. Chriped micro lens array for compound eye imaging system on curved surface[D]. Xiamen university, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10384-1014223200.htm [83] 刘永华, 祖成奎, 赵华, 等.红外热成像系统用硫系玻璃的熔制技术[J].红外与激光工程, 2015, 42(5):1472-1476. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505015.htmLIU Y H, ZHAO CH K, ZHAO H, et al.. Melting technology of chalcogenide glass for infrared thermal imaging system[J]. Infrared and Laser Engineering, 2015, 42(5):1472-1476.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505015.htm [84] 戴世勋, 陈惠广, 李茂忠, 等.硫系玻璃及其在红外光学系统中的应用[J].红外与激光工程, 2012, 41(4):847-852. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201204003.htmDAI SH X, CHEN H G, LI M ZH, et al.. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4):847-852.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201204003.htm [85] 坚增运, 曾召, 董广志, 等.硫系红外玻璃的研究进展[J].西安工业大学学报, 2011, 31(1):1-8. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710007&dbname=CJFDPREPJIAN Z Y, ZENG ZH, DONG G ZH, et al.. Progress in the research of chalcogenide glasses for infrared transmission[J]. J. Xi'an Technological University, 2011, 31(1):1-8.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710007&dbname=CJFDPREP [86] LI J, WANG M, WANG, et al.. Preparation and optical properties of dispersible ZnS enanocrystals synthesized by high energy ball milling[J]. Ceramics International, 2008, 34(4):1077-1080. doi: 10.1016/j.ceramint.2007.09.042 [87] PEJOVA B, GROZDANOV I. Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form[J]. Materials Chemistry & Physics, 2005, 90(1):35-46. [88] CHANG S, HUANG B, CHEN X, et al.. Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 104C(3):143-149. [89] 潘永强, 杭凌侠, 梁海锋, 等.硒化锌基底2~16μm超宽带硬质红外增透膜的研制[J].光学学报, 2010, 30(4):1201-1204. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201004063.htmPAN Y Q, HANG L X, LIANG H F, et al.. Ultrabroad band and hard infrared antiflection coatings on ZnSe for 2~16μm[J]. Actaopticasinica, 2010.30(4):1201-1204.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201004063.htm [90] 冯博. ZnSe纳米材料的制备及光学、光催化性能研究[D]. 北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1013293630.htmFENG B. Investigation on the synthesis optical and photocatalytic properties of ZnSe nanomaterials[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1013293630.htm [91] 黄毅, 陈永胜.石墨烯的功能化及其相关应用[J].中国科学, 2009, 30(4):887-896. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200909004.htmHUANG Y, CHEN Y SH. Functionalization of graphene and their applications[J]. Scichina, 2009(9):887-896.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200909004.htm [92] 徐秀娟, 秦金贵, 李振.石墨烯研究进展[J].化学进展, 2009(12):2559-2567. http://youxian.cnki.com.cn/yxdetail.aspx?filename=WLXB20171009002&dbname=CAPJ2015XU X J, QIN J G, LI ZH. Research advances of graphene[J]. Progress in Chemistry, 2009(12):2559-2567.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=WLXB20171009002&dbname=CAPJ2015 [93] 张永康. 石墨烯的制备及其摩擦学性能研究[D]. 南京理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166540.htmZHANG Y K. Research on graphene preparation and its tribological properties[D]. Nanjing University of Science & Technology, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166540.htm [94] CHEN C S. Carbon nanotubes reinforced nickel-phosphorus base composite coating[J]. Acta Physica Sinica, 2004, 53(2):531-536. [95] ZHU Y, MURALI S, CAI W, et al.. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-24. doi: 10.1002/adma.201001068