留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏光全息研究历程与展望

洪一凡 臧金亮 刘颖 范凤兰 吴安安 邵龙 康果果 谭小地

洪一凡, 臧金亮, 刘颖, 范凤兰, 吴安安, 邵龙, 康果果, 谭小地. 偏光全息研究历程与展望[J]. 中国光学(中英文), 2017, 10(5): 588-602. doi: 10.3788/CO.20171005.0588
引用本文: 洪一凡, 臧金亮, 刘颖, 范凤兰, 吴安安, 邵龙, 康果果, 谭小地. 偏光全息研究历程与展望[J]. 中国光学(中英文), 2017, 10(5): 588-602. doi: 10.3788/CO.20171005.0588
HONG Yi-fan, ZANG Jin-liang, LIU Ying, FAN Feng-lan, WU An-an, SHAO Long, KANG Guo-guo, TAN Xiao-di. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588-602. doi: 10.3788/CO.20171005.0588
Citation: HONG Yi-fan, ZANG Jin-liang, LIU Ying, FAN Feng-lan, WU An-an, SHAO Long, KANG Guo-guo, TAN Xiao-di. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588-602. doi: 10.3788/CO.20171005.0588

偏光全息研究历程与展望

基金项目: 

国家自然科学基金项目 61475019

国家自然科学基金项目 61675020

详细信息
    作者简介:

    洪一凡(1992—),男,辽宁沈阳人,硕士研究生,2015年于北京理工大学获得学士学位,主要从事偏光全息光学方面的研究。E-mail:2120150516@bit.edu.cn

    康果果(1980—),男,四川成都人,博士,副教授,博士生导师,主要从事微纳光学、偏光全息方面的研究

    通讯作者:

    康果果, E-mail:kgg@bit.edu.cn

  • 中图分类号: TP394.1;TH691.9

Review and prospect of polarization holography

Funds: 

National Natural Science Foundation of China 61475019

National Natural Science Foundation of China 61675020

More Information
  • 摘要: 全息是目前一项极具前景的科学技术,即通过信号光和参考光的干涉,在小小的全息图上记录丰富的信息。相比于传统全息仅记录光波的相位、振幅信息,偏光全息可以将额外的偏振信息记录于偏振态敏感材料中。本文从偏光全息材料入手,详细介绍了偏光全息生产过程;同时介绍基于琼斯理论和张量理论的偏光全息原理和研究进展;最后描述了偏光全息在全息存储和纳米光学领域的发展前景。

     

  • 图 1  叠加光场偏振态随相位差变化图

    Figure 1.  Polarization state of interference wave field changes with the variety of phase difference

    图 2  PQ/PMMA片状材料

    Figure 2.  PQ/PMMA in plate form

    图 3  衍射效率随PQ浓度变化图

    Figure 3.  Variation of diffraction efficiency with PQ′s concentration

    图 4  曝光前后偏光全息材料变化

    Figure 4.  Variety of polarization holography material before and after exposure

    图 5  偏光全息干涉示意图

    Figure 5.  Schematic diagram of polarization holography

    图 6  基于线偏振光的实验装置、实验结果

    Figure 6.  Experimental setup and experimental result based on linear polarization holography

    图 7  基于圆偏光实验装置、实验结果

    Figure 7.  Experimental setup and experimental result based on circular polarization holography

    图 8  基于椭圆偏光的实验装置、实验结果

    Figure 8.  Experimental setup and experimental result based on ellipse polarization holography

    表  1  线偏光偏光状态

    Table  1.   Polarization state of linear polarized wave

    记录过程 重建过程
    信号 参考 参考 重建
    s p s Bcosθp
    p Bs
    p s s Bp
    p Bcosθs
    下载: 导出CSV

    表  2  圆偏光偏振状态

    Table  2.   Polarization state of circular polarized wave

    记录过程 重建过程
    信号 参考 参考 重建(A+b=0)
    l r r [B-0.5(A-B)cosθ]l
    l 0
    r l l [B-0.5(A-B)cosθ]r
    r 0
    下载: 导出CSV

    表  3  椭圆偏振光偏振状态

    Table  3.   Polarization state of elliptical polarized wave

    记录过程 重建过程
    信号 参考 参考 重建(A+b=0)
    e -e e e
    -1/e e 1/e
    e -e e
    1/e -e 1/e
    -e 1/e 1/e
    -1/e 1/e e
    e 1/e 1/e
    1/e -1/e e
    下载: 导出CSV
  • [1] GABOR D. A new microscopic principle[J]. Nature, 1948, 161:777-779. doi: 10.1038/161777a0
    [2] LEITH E N, UPATNIEKS J. Reconstructed Wavefronts and Communication Theory[J]. J. Optical Society of America, 1962, 52(10):1123-1130. http://www.opticsinfobase.org/abstract.cfm?id=75894
    [3] DENISYUK YU N. Photographic reconstruction of the optical properties of an object its own scatteredradiation field[J]. Sov Phys-Dokl, 1962, 7:544-546. http://adsabs.harvard.edu/abs/1962SPhD....7..543D
    [4] VANDER LUGT A, ROTZ F B, KLOOSTER A. Character reading by optical spatial filtering[M]//Optical and Electro-Optical Information Processing. New York:Mass Inst Technology Press, 1965:125-135.
    [5] BENTON S A. Hologram reconstructions with extended light sources[J]. J. Optical Society of America, 1969, 59(10):1545-1547.
    [6] WHITE J G, AMOSW B.Confocal microscopy comes of age[J]. Nature, 1987, 328:184-184. doi: 10.1038/328184a0
    [7] SON J, JAVIDI B, KWACK K. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3):502-523. doi: 10.1109/JPROC.2006.870686
    [8] OSTROVSKY Y I, BUTUSOV M M, OSTROVSKAYA G V. Interferometry by Holography[M]. Berlin:Springer, 1980:184-191.
    [9] Y Z L, JIN G F. Computer-generated Hologram[M]. Beijing:Tinghua University Press, 1984:12-30, 48-50.
    [10] CURTIS K, DHAR L, FACKE T. Holographic data storage:coming of age[J]. Nature Photon, 2008, 2(7):404-405. http://www.nature.com/nphoton/journal/v2/n7/abs/nphoton.2008.120.html
    [11] 吴安安. 基于圆偏振光的偏光全息理论基础研究[D]. 北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015809485.htm

    WU A A. Polarization holography based on the circular polarized wave[D]. Beijing:Beijing Institute of Technology., 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10007-1015809485.htm
    [12] KIHARA T, KUBO H, NAGATA R. Isopachics measurement using immersion method polarization holography[J]. Applied Optics, 1976, 15(12):3025-3028. doi: 10.1364/AO.15.003025
    [13] 赵娟.激光技术在医学上的应用[J].医疗卫生装备, 2003, 24(7):18-19. http://www.cnki.com.cn/Article/CJFDTOTAL-YNWS200307009.htm

    ZHAO J. Application of laser technology to medicine[J]. Chinese Medical Equipment Journal, 2003, 24(7):18-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YNWS200307009.htm
    [14] 谢敬辉, 孙萍.全息术的新进展[J].北京理工大学学报, 2003, 23(2):136-138. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGFW201012027.htm

    XIE J H, SUN P. New Advances in Holography[J]. J. Beijing Institute of Technology(Natural Science Edition), 2003, 23(2):136-138.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGFW201012027.htm
    [15] CURTIS K, DHAR L, HILL A, et al.. Holographic DataStorage:From Theory to Practical Systems[M]. New York:John Wiley & Sons Ltd, 2010:1-14.
    [16] COUFAL H J, PSALTIS D, SINCERBOX G T. Holographic Data Storage[M]. Berlin:Springer-Verlag, 2000:1-17.
    [17] HEANUE J F, BASHAW M C, DAIBER A J, et al.. Digital holographic storage system incorporating thermal fixing in lithium niobate[J]. Optics Letters, 1996, 21(19):1615-1617. doi: 10.1364/OL.21.001615
    [18] LOHMANN A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 1965, 4(12):1667-1668. doi: 10.1364/AO.4.001667
    [19] FOURNEY M E, WAGGONER A P, MATE K V. Recording polarization effects via holography[J]. J. Optical Society of America, 1968, 58(5). http://www.opticsinfobase.org/abstract.cfm?uri=josa-58-5-701
    [20] NIKOLOVA L, RAMANUJAM P S. Polarization Holography[M]. Cambridge:Cambridge University Press, 2009:25-85.
    [21] KURODA K, MATSUHASHI Y, FUJIMURA R, et al.. Theory of polarization holography[J]. Optical Review, 2011, 18(5):374-382. doi: 10.1007/s10043-011-0072-5
    [22] PU S, YANG T, YAO B, et al.. Photochromic diarylethene for polarization holographic optical recording[J]. Materials Letters, 2007, 61(3):855-859. doi: 10.1016/j.matlet.2006.06.084
    [23] FU, S, LIU Y, DONG L, et al.. Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films[J]. Materials Letters, 2005, 59(11):1449-1452. doi: 10.1016/j.matlet.2005.01.001
    [24] FU S, LIU Y, LU Z, et al.. Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light[J]. Optics Communications, 2004, 242(1-3):115-122. doi: 10.1016/j.optcom.2004.08.022
    [25] VINHPHUC P G M, ROGER A L, RICCARDO P. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media[J]. Optical Materials, 1995, 4:467-475. doi: 10.1016/0925-3467(94)00122-7
    [26] COUTURE J J. Polarization holographic characterization of organic azo dyes/PVA films for real time applications[J]. Applied Optics, 1991, 30(20):2858. doi: 10.1364/AO.30.002858
    [27] KAWATSUKI N, MATSUSHITA H, KONDO M, et al.. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups[J]. Appl. Materials, 2013, 1(2):37. doi: 10.1063/1.4818003
    [28] CIPPARRONE G, PAGLIUSI P, PROVENZANO C, et al.. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence[J]. J. Physical Chemistry B, 2010, 114(27):8900. doi: 10.1021/jp103899b
    [29] MAO W, SUN Q, BAIG S, et al.. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system[J]. Optics Communications, 2015, 355:256-260. doi: 10.1016/j.optcom.2015.06.034
    [30] ZHAO F, WANG C, QIN M, et al.. Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence[J]. Optics Communications, 2015, 338:461-466. doi: 10.1016/j.optcom.2014.11.019
    [31] CHEN P L. Phenanthrenequinone-doped copolymers for holographic data storage[J]. Optical Engineering, 2009, 48(3):035802(1-6). doi: 10.1117/1.3099713
    [32] STECKMAN G J. Holographic recording in a photopolymer by optically induced detachment of chromophores[J]. Optics Letters, 2000, 25(9):607-609. doi: 10.1364/OL.25.000607
    [33] HONGPENG L, D Y, XUECONG L, SUHUA L, et al.. Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer[J]. Optics Express, 2010, 18(7):6447-6454. doi: 10.1364/OE.18.006447
    [34] NIKOLOVA L, MARKOVSKY P, TOMOVA N, et al.. Optically-controlled photo-induced birefringence in photo-anisotropic materials[J]. J. Modern Optics, 1988, 35(11):1789-1799. doi: 10.1080/09500348814551961
    [35] TODOROV T, NIKOLOVA L, TOMOVA N, et al.. Photoinduced anisotropy in rigid dye solutions for transient polarization holography[J]. IEEE J. Quantum Electronics, 1986, 22(8):1262-1267. doi: 10.1109/JQE.1986.1073138
    [36] TODOROV T, NIKOLOVA L, TOMOVA N. Polarization holography. 1:a new high-efficiency organic material with reversible photoinduced birefringence[J]. Applied Optics, 1984, 23(23):4309-12. doi: 10.1364/AO.23.004309
    [37] TODOROV T, NIKOLOVA L, TOMOVA N. Polarization holography.2:polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence[J]. Applied Optics, 1984, 23:4588. doi: 10.1364/AO.23.004588
    [38] TODOROV T, NIKOLOVA L, STOYANOVA K, et al.. Polarization holography.3:Some applications of polarization holographic recording[J]. Applied Optics, 1985, 24:785. doi: 10.1364/AO.24.000785
    [39] NIKOLOVA L, TODOROV T, IVANOV M, et al.. Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy[J]. Applied Optics, 1996, 35:3835-3840. doi: 10.1364/AO.35.003835
    [40] NIKOLOVA L, TODOROV T, IVANOV M, et al.. Photoinduced circular anisotropy in side-chain azobenzene polyesters[J]. Optical Materials, 1997, 8(4):255-258. doi: 10.1016/S0925-3467(97)00046-3
    [41] NIKOLOVA L, TODOROV T. Diffraction efficiency and selectivity of polarization holographic recording[J]. J. Modern Optics, 1984(5):579-588. doi: 10.1080/713821547
    [42] WANG C, LI H, WANG J, et al.. Polarization conversions of diffractive wave plates based on orthogonal circular-polarization holography[J]. Chinese Optics Letters, 2016, 14(1):36-39. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxkb201601009&dbname=CJFD&dbcode=CJFQ
    [43] GLEESON M R. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. J. Optical Society of America B, 2008, 25(3):396-406. doi: 10.1364/JOSAB.25.000396
    [44] LIU S, GLEESON M R, SHERIDAN J T. Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material[J]. J. Optical Society of America B, 2009, 26(3):528-536. doi: 10.1364/JOSAB.26.000528
    [45] KOSTUK R K. Dynamic hologram recording characteristics in DuPont photopolymers[J]. Applied Optics, 1999, 38(8):1357-63. doi: 10.1364/AO.38.001357
    [46] GARCIA C, FIMIA A, PASCUAL I. Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations:mechanism of photopolymerization[J]. Applied Physics B, 2001, 72(3):311-316. doi: 10.1007/s003400000469
    [47] GALLEGO S, ORTU O M, NEIPP C, et al.. 3 Dimensional analysis of holographic photopolymers based memories[J]. Optics Express, 2005, 13(9):3543-57. doi: 10.1364/OPEX.13.003543
    [48] YAMASAKI K, JUODKAZIS S, WATANABE M, et al.. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films[J]. Applied Physics Letters, 2000, 76(8):1000-1002. doi: 10.1063/1.125919
    [49] DAY D, GU M. Formation of voids in a doped polymethylmethacrylate polymer[J]. Applied Physics Letters, 2002, 80(13):2404-2406. doi: 10.1063/1.1467615
    [50] VENIAMINOV A V, BARTSCH E, POPOV A P. Postexposure evolution of aphotoinduced grating in a polymer material with phenanthrenequinone[J]. Optics and Spectroscopy, 2005, 99(5):744-750. doi: 10.1134/1.2135850
    [51] VENIAMINOV A V, SILLESCU H. Forced Rayleigh scattering from non-harmonic gratings applied to complex diffusion processes in glass-forming liquids[J]. Chemical Physics Letters, 1999, 303(5-6):499-504. doi: 10.1016/S0009-2614(99)00257-2
    [52] LIU Y, LI Z, ZANG J, et al.. The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer materials for volume holographic storage[J]. Optical Review, 2015, 22(5):837-840. doi: 10.1007/s10043-015-0108-3
    [53] PAN X, XIAO S, WANG C, et al.. Photoinduced anisotropy in an azo-containing ionic liquid-crystalline polymer[J]. Optics Communications, 2009, 282(5):763-768. doi: 10.1016/j.optcom.2008.11.013
    [54] ZANG J, WU A, LIU Y, et al.. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 2015, 22(5):829-831. doi: 10.1007/s10043-015-0122-5
    [55] WANG J, KANG G, WU A, et al.. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram[J]. Optics Express, 2016, 24(2):1641. doi: 10.1364/OE.24.001641
    [56] WU A, KANG G, ZANG J, et al.. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 2015, 23(7):8880-8887. doi: 10.1364/OE.23.008880
    [57] LIU Y, ZANGJ L, WU A A, et al.. The optical properties study of PQ/PMMA photopolymer in volume holographic storage[C]. The 11th Conference on Lasers and Electro-Optics Pacific Rim, (CLEO-PR2015), 2015, Korea.
    [58] ZHANG Y, KANG G, ZANG J, et al.. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 2016, 41(17):4126-4129. doi: 10.1364/OL.41.004126
    [59] 陈运达, 汪之国, 江奇渊, 等.非理想1/4波片对泵浦光偏振态的影响[J].中国光学, 2017, 10(2):226-233. http://www.chineseoptics.net.cn/CN/abstract/abstract9475.shtml

    CHEN Y D, WANG ZH G, JIANG Q Y, et al.. Influence of nonideal 1/4 wave plate on pump light polarization[J]. Chinese Optics, 2017, 10(2):226-233.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9475.shtml
    [60] ZHANG Y Y, ZANG J L, WANG J, et al.. Tsutomu shimura and kazuo kuroda, reconstruction characeristics of polarization holography using the elliptical polarized wave[J]. SPIE Photonics Europe, 2016, 9889-24.
    [61] 张伊盈, 臧金亮, 刘颖, 等. 基于椭偏振光的偏振全息理论基础研究[C]. 中国光学学会全息与光信息处理专委会学术年会, 上海, 中国, 2016.
    [62] ZHANG Y Y, WU A A, ZANGJ L, et al.. Reconstruction characteristics of elliptical-polarization holography at a large recording angle[C]. International Symposium on Optical Memory 2016(IOSM16), Kyoto, Japan, 2016:We-L-7.
    [63] ZHANG Y Y, WU A A, ZANG J L, et al.. Polarization holography written by elliptically polarized wave at a large cross angle[J]. SPIE Photonics Asia, 2016, 10022-31.
    [64] VINETSKⅡ V L, KUKHTAREV N V, ODULOV S G, et al.. Dynamic self-diffraction of coherent light beams[J]. Soviet Physics Uspekhi, 1979, 22(9):742-756. doi: 10.1070/PU1979v022n09ABEH005609
    [65] HEATON J M, MILLS P A, PAIGE E G S, et al.. Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials[J]. J. Modern Optics, 1984(8):885-901. doi: 10.1080/713821584
    [66] SHATALIN I D. Mechanism of photoanisotropy in photochemical trans-cis isomerization[J]. Optics & Spectroscopy, 1989, 66:209-211. http://adsabs.harvard.edu/abs/1989OptSp..66..209S
    [67] PAN X, WANG C, WANG C, et al.. Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer[J]. Applied Optics, 2008, 47(1):93-8. doi: 10.1364/AO.47.000093
    [68] OSTROVERKHOVA O, MOERNER W E. Organic photorefractives:mechanisms, materials, and applications[J]. Chemical Reviews, 2004, 104(7):3267. doi: 10.1021/cr960055c
    [69] KAKICHASHVILI S D, KAKICHASHVILI S D. Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium[J]. Soviet J. Quantum Electronics, 1983, 13(10):1976-1981. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=qe&paperid=4848&option_lang=eng
    [70] KAKICHASHVILI S D. Regularity in photoanisotropic phenomena[J]. Optics & Spectroscopy, 1982, 52:191-194. http://adsabs.harvard.edu/abs/1982OptSp..52..191K
    [71] HALL T J, JAURA R, CONNORS L M, et al.. The photorefractive effect-a review[J]. Progress in Quantum Electronics, 1985, 10(2):77-146. doi: 10.1016/0079-6727(85)90001-1
    [72] KOGELNIK H. Coupled wave theory for thick hologram gratings[J]. The Bell System Technical Journal, 1969, 48(9):2909-2947. doi: 10.1002/bltj.1969.48.issue-9
    [73] HUANG T, WAGNER K H. Coupled-mode analysis of dynamic polarization volume holograms[J]. SPIE, 1991, 1559:372-390. http://spiedigitallibrary.org/proceeding.aspx?articleid=971510
    [74] HUANG T, WAGNER K H. Photoanisotropic incoherent-to-coherent conversion using five-wave mixing[J]. SPIE, 1991, 1562:44-54. doi: 10.1117/12.50769
    [75] 陶世荃.高密度光学全息存储技术的新进展:向光盘存储挑战[J].物理, 1997, 2:79-85. doi: 10.11804/NuclPhysRev.14.02.079
    [76] DHAR L, CURTIS K, HALE A, et al.. High Density Holographic Data Storage[C]. Optical Data Storage, 2000. Conference Digest. IEEE, 2000:158-160.
    [77] SHI X, LAWRENCE B, ERBEN C. Dye-doped thermoplastics for holographic data storage[J]. SPIE, 2006, 6335:633509. doi: 10.1117/12.679540
    [78] KELLY J V, GLEESON M R, CLOSE C E, et al.. Temporal response and first order volume changes during grating formation in photopolymers[J]. J. Applied Physics, 2006, 99(11):28-160. doi: 10.1063/1.2200400
    [79] ORLOV S S, PHILLIPS W, BJORNSON E, et al.. High-transfer-rate high-capacity holographic disk data-storage system[J]. Applied Optics, 2004, 43(25):4902. doi: 10.1364/AO.43.004902
    [80] WAN Y, TAO S, ZHUO D, et al.. Coherent scattering noise properties of a blue laser sensitized holographic photopolymer material[J]. SPIE, 2007, 6827:682711. http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=814144
    [81] NOBUKAWA T, NOMURA T. Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography[J]. Optics Express, 2016, 24(18):21001. doi: 10.1364/OE.24.021001
    [82] NOBUKAWA T, FUKUDA T, BARADA D, et al.. Coaxial polarization holographic data recording on a polarization-sensitive medium[J]. Optics Letters, 2016, 41(21):4919. doi: 10.1364/OL.41.004919
    [83] SRIKHIRIN T, CIMROVA V, SCHIEWE B, et al.. An investigation of the photoinduced changes of absorption of high-performance photoaddressable polymers[J]. Chem. Phys. Chem., 2002, 3(4):335-342. doi: 10.1002/(ISSN)1439-7641
    [84] 刘全, 吴建宏, 郭培亮.用于强激光系统的光栅偏振器[J].光学精密工程, 2016, 24(12):2962-2968. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZXGH201611001054.htm

    LIU Q, WU J H, GUO P L. Grating polarizers for high power laser systems[J]. Opt. Precision Eng., 2016, 24(12):2962-2968.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZXGH201611001054.htm
    [85] 程柏, 韩冰, 谷立山, 等.纳结构的连续激光复合微纳探针刻划加工[J].光学精密工程, 2015, 23(7):2043-2050. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201507031.htm

    CHENG B, HAN B, GU L SH, et al.. Nanostructure machining by AFM probe combined with continuous laser[J]. Opt. Precision Eng., 2015, 23(7):2043-2050.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201507031.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  3989
  • HTML全文浏览量:  1281
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 修回日期:  2017-05-25
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回