-
摘要: 超颖表面是一种特殊的二维亚波长阵列结构,具有很强的光场调控能力,兼有超薄、低损耗、易加工等优势,表现出广阔应用前景,近些年吸引了广泛的研究兴趣。本文将综述超颖表面的原理与研究进展,简要分析已报道的超颖表面类型,并重点介绍其在广义折反射、偏振转换、光束轨道角动量操控以及计算全息中的应用。超颖表面设计灵活、功能强大,有望在诸多应用中取代传统光电器件。未来基于超颖表面的新型、宽带、高效率、多功能以及主动可调功能器件等将是其重要的发展方向。Abstract: Metasurfaces, a specific type of subwavelength-scale two-dimensional(2D) array, have shown great flexibilities to control the light field. Metasurfaces possess the unique advantages of ultrathin, low-loss and easy fabrication, therefore attract immense attentions and show broad prospects for applications. This paper reviews recent progress in the physics of metasurfaces and the applications for generalized refraction and reflection, polarization conversion, controlling the orbit angular moment of light and computer generated holography(CGH). Due to the extra design freedom and powerful functionality, metasurfaces allow the possibility to substitute the conventional optical components in a variety of applications. In the future, novel types of metasurfaces with broadband, high efficiency, multi-task and active tunability are still highly desired and of great value.
-
图 2 (a)惠更斯表面样品实物图;(b)上半部分:实验测得的辐射图案;下半部分:测得的x-y平面磁场强度分布[26]。(c)光波段各向同性惠更斯超颖表面示意图与单元结构示意图;(d)在1.5 μm波长光照射下的异常折射光的仿真电场分布[27]
Figure 2. (a)Photograph of the fabricated metasurfaces with anomalous refraction. (b)Upper panel: the measured radiative pattern; bottom panel: the distribution of measured magnetic field in x-y plane[26]. (c)Schematic of an optically thin isotropic Huygens′ metasurface and its unit cell. (d)Simulated electric field distribution of the anomalous beam at 1.5 μm[27]
图 3 贝里相位与偏振演化路径。(a)初态沿不同路径演化到同一终态所对应立体角;(b)当圆偏振入射,经过纳米棒天线阵列,并取相反圆偏振时,光的偏振态演化路径。偏振态演化路径分别经历σ→φ1→σ与σ→φ2→σ[22],其中φ1和φ2分别为两不同天线的方位角
Figure 3. Pancharatnam-Berry phase and the evolution of polarization. (a) Different polarization evolution path in Poincaré sphere. (b)The polarization evolution path for metasurfaces composed of nanorods array when illuminated with circularly polarized light and selected orthogonal handedness circularly polarized light. The polarization state undergo σ→φ1→σ and σ→φ2→σ respectively, where φ1 and φ2 are the azimuthal angle for two different nanorods, respectively
图 4 基于贝里相位的几类超颖表面及其应用。(a)手性可调异常透射;(b)手性选择性双极性透镜[36];(c)手性选择性宽带涡旋光束发生器[37]
Figure 4. Several metasurfaces and their applications based on Berry phase. (a)Helicity-dependent tunable anomalous transmission. (b)Helicity-dependent dual-polarity metalens[36]. (c)Helicity-dependent broadband vortex beam generator[37]
图 5 两类结构互补的超颖表面:(a)颗粒性天线阵列;(b)小孔型天线阵列[22]
Figure 5. Two types of complementary metasurfaces.(a)An particle antenna array. (b)A complementary aperture array
图 9 基于超颖表面的全息。(a)金属小孔阵列,以及入射波长分别为λ1=905 nm以及λ2=1 385 nm的远场再现图[75];(b)利用V型小孔实现的全息的样品SEM图[78];(c)基于贝里相位纳米棒阵列三维全息示意图[21];(d)基于贝里相位的高效率反射阵列全息单元结构及其实验测得的远场全息图[77]
Figure 9. Hologram based on metasurfaces. (a) an array of metal aperture and the far-field image of metasurface at λ1=905 nm and λ2=1 385 nm, respectively[75]. (b) SEM image of metasurface consisting of V-shaped apertures to realize holography[78]. (c)Schematic of metasurface hologram composed of nanorods array based on Pancharatnam-Berry phase principle[21]. (d)Unit cell of reflect-array metasurfacehologram with high efficiency base on Pancharatnam-Berry phase and the measured image in the far field[77]
图 10 全息图的不同复用方式[79]:(a)可在不同聚焦位置以及旋转角观察全息图的实验装置以及固定观察距离分别在不同圆偏振光入射时所成再现像。(b)同一样品不同z平面再现像;(c)同一样品不同距离以及离轴角观测的再现像
Figure 10. Different forms of holographic multiplexing[79]. (a)Experimental setup for observing the holographic images at separate focus positions and rotational angles and the reconstructions of image for different incident helicity. (b)The measured images for different incident helicity at different z planes. (c)Schematic of the observation for the four encoded objects with separate off-axis angles and reconstruction distances and the experimental reconstruction images
图 11 利用超颖表面生成涡旋光:(a)用V型天线超颖表面构成的相位轮廓以及生成的干涉图案[19];(b)可见光频率空间复用超颖表面示意图[90];(c)开口环宽带涡旋光生成超颖表面SEM图像以及其左旋光与线偏振光入射下测得的透射图案[87];(d)从左至右依次为分割式(Segmented)、插入式(Interleaved)与谐波响应(Harmonic Response)超颖表面及其形成的远场强度分布示意图[91]
Figure 11. Vortex beam generation based on metasurfaces: (a)A phase profile created using V-shaped antenna metasurfaces and the interference patterns[19]; (b)Schematic of visible-frequency metasurfaces for spatially multiplexing optical vortices[90]; (c)SEM image of the split-ring metasurface which was designed for generating an optical vortex beam and the measured transmitted patterns under the incident beam with left-handed circular polarization and linear polarization, respectively[87]; (d)Schematic of far-field intensity distributions from segmented, interleaved, and harmonic response metasurfaces(from left to right)[91]
图 12 (a)由V型天线构成的宽波段四分之一波片结构示意图;(b)所得圆偏振光的偏振分析[20];(c)THz波段实现线偏振到圆偏振转换样品图;(d)实验所得(c)中样品txx和tyy振幅,相位差以及椭偏度[98];(e)用以实现圆-圆偏振转换的样品示意图;(f)仿真与实验所得透射率[102]
Figure 12. (a)Schematic of a broadband quarter-wave plate consisting of V-shaped antennas. (b)State-of-polarization analysis for the obtained circular polarization light[20]. (c)An image of the fabricated sample which produces the linear to circular polarization conversion at THz band. (d) Experimentally measured transmission amplitude, phase retardation, and ellipticity for the sample exhibited in (c)[98]. (e)Schematic of sample to realize asymmetric transmission and polarization conversion. (f)Simulated and measured transmission[102]
图 13 基于超颖表面旋光应用。(a)实现线偏振旋转的反射型超颖表面示意图;(b)实现旋光的透射型超颖表面示意图;(c)实验测得反射型结构同偏振与正交偏振反射率;(d)实验测得透射型旋光结构正交偏振透射率和同偏振反射率[103]
Figure 13. Linear polarization rotation based on metasurfaces. (a)Schematic of the metasurface to rotate the incident linearly polarized light in reflection; (b)Schematic of the metasurface to rotate the incident linearly polarized light in transmission. (c)Experimentally measured co-and cross-polarized reflection for the reflection type. (d)Experimentally measured cross-polarized transmission and co-polarized reflection for the transmission type[103]
-
[1] YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2):139-150. doi: 10.1038/nmat3839 [2] CHEN H, TAYLOR A J, YU N. A review of metasurfaces:physics and applications[J]. ArXiv:1605.07672, 2016. [3] SMITH D R, PENDRY J B, WILTSHIRE M. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. doi: 10.1126/science.1096796 [4] PENDRY J B, HOLDEN A J, STEWART W J, et al.. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25):4773-4776. doi: 10.1103/PhysRevLett.76.4773 [5] PENDRY J B, HOLDEN A J, ROBBINS D J, et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11):2075-2084. doi: 10.1109/22.798002 [6] SMITH D R, PADILLA W J, VIER D C, et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. doi: 10.1103/PhysRevLett.84.4184 [7] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79. doi: 10.1126/science.1058847 [8] ZHANG S, FAN W J, PANOIU N C, et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Review Letters, 2005, 95(13):137404. doi: 10.1103/PhysRevLett.95.137404 [9] VALENTINE J, ZHANG S, ZENTGRAF T, et al.. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211):376-379. doi: 10.1038/nature07247 [10] XIAO S, CHETTIAR U K, KILDISHEV A V, et al.. Yellow-light negative-index metamaterials[J]. Optics Letters, 2009, 34(22):3478-3480. doi: 10.1364/OL.34.003478 [11] SMITH D R, SCHULTZ S, MARKOS P, et al.. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19):195104. doi: 10.1103/PhysRevB.65.195104 [12] SMITH D R, VIER D C, KOSCHNY T, et al.. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(3):142-154. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=15903615 [13] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966 [14] FANG N, LEE H, SUN C, et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537. doi: 10.1126/science.1108759 [15] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782. doi: 10.1126/science.1125907 [16] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781):1777-1780. doi: 10.1126/science.1126493 [17] HOLLOWAY C L, KUESTER E F, GORDON J A, et al.. An overview of the theory and applications of metasurfaces:the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2):10-35. doi: 10.1109/MAP.2012.6230714 [18] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125):1232009. doi: 10.1126/science.1232009 [19] YU N, GENEVET P, KATS M A, et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. doi: 10.1126/science.1210713 [20] YU N, AIETA F, GENEVET P, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12):6328-6333. doi: 10.1021/nl303445u [21] HUANG L, CHEN X, MVHLENBERND H, et al.. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4:2808. http://europepmc.org/abstract/PMC/PMC3868226 [22] 黄玲玲. 基于手性光场作用的超颖表面的相位调控特性及其应用[D]. 北京: 清华大学, 2014. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201606001&dbname=CJFD&dbcode=CJFQHUANG L L. The phase modulation property of metasurfaces based on chiral field interaction and its applications[D]. Beijing:Tsinghua University, 2014.(inChinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201606001&dbname=CJFD&dbcode=CJFQ [23] BHARADWAJ P, DEUTSCH B, NOVOTNY L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3):438-483. doi: 10.1364/AOP.1.000438 [24] NOVOTNY L, VAN HULST N. Antennas for light[J]. Nature Photonics, 2011, 5(2):83-90. doi: 10.1038/nphoton.2010.237 [25] KATS M A, GENEVET P, AOUST G, et al.. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences, 2012, 109(31):12364-12368. doi: 10.1073/pnas.1210686109 [26] PFEIFFER C, GRBIC A. Metamaterial Huygens' surfaces:tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19):197401. doi: 10.1103/PhysRevLett.110.197401 [27] PFEIFFER C, EMANI N K, SHALTOUT A M, et al.. Efficient light bending with isotropic metamaterial Huygens' surfaces[J]. Nano Letters, 2014, 14(5):2491-2497. doi: 10.1021/nl5001746 [28] KIM M, WONG A M H, ELEFTHERIADES G V. Optical Huygens metasurfaces with independent control of the magnitude and phase of the local reflection coefficients[J]. Physical Review X, 2014, 4(4):041042. doi: 10.1103/PhysRevX.4.041042 [29] WANG Z, SHI J, CHEN J. High-efficiency electromagnetic wave controlling with all-dielectric Huygens'metasurfaces[J]. International J. Antennas and Propagation, 2015:1-7. http://connection.ebscohost.com/c/articles/109272942/high-efficiency-electromagnetic-wave-controlling-all-dielectric-huygens-metasurfaces [30] DECKER M, STAUDE I, FALKNER M, et al.. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6):813-820. doi: 10.1002/adom.v3.6 [31] ZHAO W, JIANG H, LIU B, et al.. Dielectric Huygens'metasurface for high-efficiency hologram operating in transmission mode[J]. Scientific Reports, 2016, 6:30613. doi: 10.1038/srep30613 [32] Generalized Theory of Interference and its Applications.Part 2:Partially Coherent Pencils[J]. Proceedings of Indian Academy of Sciences, 1956, section A, 4(6):398-417. [33] BERRY M V. Quantal phase-factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1984, 392(1802):45-57. doi: 10.1098/rspa.1984.0023 [34] MENZEL C, ROCKSTUHL C, LEDERER F. An advanced jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A, 2010, 82(5):53811. doi: 10.1103/PhysRevA.82.053811 [35] ARMITAGE N P. Constraints on jones transmission matrices from time-reversal invariance and discrete spatial symmetries[J]. Physical Review B, 2014, 90(3):35135. doi: 10.1103/PhysRevB.90.035135 [36] KANG M, FENG T, WANG H T, et al.. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14):15882-15890. doi: 10.1364/OE.20.015882 [37] HUANG L, CHEN X, M HLENBERND H, et al.. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11):5750-5755. doi: 10.1021/nl303031j [38] WANG B, DONG F, LI Q, et al.. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8):5235-5240. doi: 10.1021/acs.nanolett.6b02326 [39] FALCONE F, LOPETEGI T, LASO M, et al.. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Physical Review Letters, 2004, 93(19):197401. doi: 10.1103/PhysRevLett.93.197401 [40] ZENTGRAF T, MEYRATH T P, SEIDEL A, et al.. Babinet'S principle for optical frequency metamaterials and nanoantennas[J]. Physical Review B, 2007, 76(3):033407. http://adsabs.harvard.edu/abs/2007PhRvB..76c3407Z [41] CHEN H T, O'HARA J F, TAYLOR A J, et al.. Complementary planar terahertz metamaterials[J]. Opt Express, 2007, 15(3):1084-1095. doi: 10.1364/OE.15.001084 [42] POZAR D M, TARGONSKI S D, SYRIGOS H D. Design of millimeter wave microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(2):287-296. doi: 10.1109/8.560348 [43] 马科斯玻恩, 埃米尔沃尔夫.光学原理——光的传播、干涉和衍射的电磁理论(第七版)[M].北京:电子工业出版社, 2009.BORN M, WOLF E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. Beijing:Electronic Industry Press, 2009.(in Chinese) [44] EVLYUKHIN A B, REINHARDT C, CHICHKOV B N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation[J]. Physical Review B, 2011, 84(23):235429. doi: 10.1103/PhysRevB.84.235429 [45] EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al.. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 2010, 82(4):045404. doi: 10.1103/PhysRevB.82.045404 [46] ZHAO Q, KANG L, DU B, et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Physical Review Letters, 2008, 101(2):027402. doi: 10.1103/PhysRevLett.101.027402 [47] VYNCK K, FELBACQ D, CENTENO E, et al.. All-dielectric rod-type metamaterials at optical frequencies[J]. Physical Review Letters, 2009, 102(13):133901. doi: 10.1103/PhysRevLett.102.133901 [48] ZHAO Q, ZHOU J, ZHANG F, et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69. doi: 10.1016/S1369-7021(09)70318-9 [49] PENG L, RAN L, CHEN H, et al.. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Physical Review Letters, 2007, 98(15):157403. doi: 10.1103/PhysRevLett.98.157403 [50] GINN J C, BRENER I, PETERS D W, et al.. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters, 2012, 108(9):097402. doi: 10.1103/PhysRevLett.108.097402 [51] CHENG J, ANSARI-OGHOL-BEIG D, MOSALLAEI H. Wave manipulation with designer dielectric metasurfaces[J]. Optics Letters, 2014, 39(21):6285-6288. doi: 10.1364/OL.39.006285 [52] CHONG K E, STAUDE I, JAMES A, et al.. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Letters, 2015, 15(8):5369-5374. doi: 10.1021/acs.nanolett.5b01752 [53] YANG Y, WANG W, MOITRA P, et al.. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399. doi: 10.1021/nl4044482 [54] ARBABI A, HORIE Y, BALL A J, et al.. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6:7069. doi: 10.1038/ncomms8069 [55] ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186 [56] LIN D, FAN P, HASMAN E, et al.. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194):298-302. doi: 10.1126/science.1253213 [57] AIETA F, GENEVET P, YU N, et al.. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3):1702-1706. doi: 10.1021/nl300204s [58] ZHANG X, TIAN Z, YUE W, et al.. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33):4567-4572. doi: 10.1002/adma.201204850 [59] SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5):426-431. doi: 10.1038/nmat3292 [60] SUN S, YANG K, WANG C, et al.. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12):6223-6229. doi: 10.1021/nl3032668 [61] 金国藩, 严瑛白, 邬敏贤.二元光学[M].北京:国防工业出版社, 1998.JIN G F, YAN Y B, WU M X. Binary Optics[M]. Beijing:National Defense Industry Press, 1998.(inChinese) [62] MARCHAND E W. Gradient Index Optics[M]. New York:New York Academic Press, 1978. [63] AIETA F, GENEVET P, KATS M A, et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9):4932-4936. doi: 10.1021/nl302516v [64] LI X, XIAO S, CAI B, et al.. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23):4940-4942. doi: 10.1364/OL.37.004940 [65] NI X, ISHⅡ S, KILDISHEV A V, et al.. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72. http://www.nature.com/lsa/journal/v2/n4/abs/lsa201328a.html [66] KUZNETSOV S A, ASTAFEV M A, BERUETE M, et al.. Planar holographic metasurfaces for terahertz focusing[J]. Scientific Reports, 2015, 5:7738. doi: 10.1038/srep07738 [67] CHEN X, HUANG L, M HLENBERND H, et al.. Dual-polarity plasmonicmetalens for visible light[J]. Nature Communications, 2012, 3:1198. doi: 10.1038/ncomms2207 [68] PORS A, NIELSEN M G, ERIKSEN R L, et al.. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2):829-834. doi: 10.1021/nl304761m [69] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644 [70] KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727 [71] 谢敬辉, 廖宁放, 曹良才.傅里叶光学与现代光学基础[M].北京:北京理工大学出版社, 2007.XIE J H, LIAO N F, CAO L C. Fundamentals of Fourier Optics and Contemporary Optics[M]. Beijing:Beijing Institute of Technology Press, 2007.(inChinese) [72] SLINGER C, CAMERON C, STANLEY M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8):46-53. doi: 10.1109/MC.2005.260 [73] KELLY D P, MONAGHAN D S, PANDEY N, et al.. Digital holographic capture and optoelectronic reconstruction for 3D displays[J]. International J. Digital Multimedia Broadcasting, 2010, 2010:1-14. http://www.oalib.com/paper/55386 [74] GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 2013, 5(4):456-535. doi: 10.1364/AOP.5.000456 [75] WALTHER B, HELGERT C, ROCKSTUHL C, et al.. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials, 2012, 24(47):6300-6304. doi: 10.1002/adma.201202540 [76] NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]., 2013, 4:2807. [77] ZHENG G, M HLENBERND H, KENNEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312. doi: 10.1038/nnano.2015.2 [78] NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. http://www.nature.com/ncomms/2013/131115/ncomms3807/full/ncomms3807.html?WT.ec_id=NCOMMS-20131120 [79] HUANG L, M HLENBERND H, LI X, et al.. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41):6444-6449. doi: 10.1002/adma.201502541 [80] HUANG Y, CHEN W T, TSAI W, et al.. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5):3122-3127. doi: 10.1021/acs.nanolett.5b00184 [81] KNIGHT M W, KING N S, LIU L, et al.. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1):834-840. doi: 10.1021/nn405495q [82] KNIGHT M W, LIU L, WANG Y, et al.. Aluminum plasmonic nanoantennas[J]. Nano Letters, 2012, 12(11):6000-6004. doi: 10.1021/nl303517v [83] PADGETT M, COURTIAL J, ALLEN L. Light's orbital angular momentum[J]. Physics Today, 2004, 57(5):35-40. doi: 10.1063/1.1768672 [84] ALLEN L, BEIJERSBERGEN M W, SPREEUWR, et al.. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185-8189. doi: 10.1103/PhysRevA.45.8185 [85] MOLINA-TERRIZA G, TORRES J P, TORNER L. Twisted photons[J]. Nature Physics, 2007, 3(5):305-310. doi: 10.1038/nphys607 [86] VERBEECK J, TIAN H, SCHATTSCHNEIDER P. Production and application of electron vortex beams[J]. Nature, 2010, 467(7313):301-304. doi: 10.1038/nature09366 [87] ZENG J, LI L, YANG X, et al.. Generating and separating twisted light by gradient rotation split-ring antenna metasurfaces[J]. Nano Letters, 2016, 16(5):3101-3108. doi: 10.1021/acs.nanolett.6b00360 [88] LI S, WANG J. Simultaneous demultiplexing and steering of multiple orbital angular momentum modes[J]. Scientific Reports, 2015, 5:15406. doi: 10.1038/srep15406 [89] REN H, LI X, ZHANG Q, et al.. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287):805-809. doi: 10.1126/science.aaf1112 [90] MEHMOOD M Q, MEI S, HUSSAIN S, et al.. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13):2533-2539. doi: 10.1002/adma.201504532 [91] MAGUID E, YULEVICH I, VEKSLER D, et al.. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290):1202-1206. doi: 10.1126/science.aaf3417 [92] ZHANG N, YUAN X C, BURGE R E. Extending the detection range of optical vortices by dammann vortex gratings[J]. Opt. Lett., 2010, 35(20):3495-3497. doi: 10.1364/OL.35.003495 [93] LEI T, ZHANG M, LI Y, et al.. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light:Science & Applications, 2015, 4(3):e257. http://www.nature.com/articles/lsa201530 [94] YU J, ZHOU C, JIA W, et al.. Generation of dipole vortex array using spiral dammann zone plates[J]. Appl. Opt., 2012, 51(28):6799-6804. doi: 10.1364/AO.51.006799 [95] YU J, ZHOU C, JIA W, et al.. Three-dimensional dammann array[J]. Appl. Opt., 2012, 51(10):1619-1630. doi: 10.1364/AO.51.001619 [96] YU J, ZHOU C, JIA W, et al.. Three-dimensional dammann vortex array with tunable topological charge[J]. Appl. Opt., 2012, 51(13):2485-2490. doi: 10.1364/AO.51.002485 [97] WANG D, GU Y, GONG Y, et al.. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface[J]. Optics Express, 2015, 23(9):11114-11122. doi: 10.1364/OE.23.011114 [98] CONG L, XU N, GU J, et al.. Highly flexible broadband terahertz metamaterial quarter-wave plate[J]. Laser & Photonics Reviews, 2014, 8(4):626-632. http://www.ingentaconnect.com/content/bpl/lpor/2014/00000008/00000004/art00022 [99] LI Y, ZHANG J, QU S, et al.. Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces[J]. J. Applied Physic, 2015, 117(4):44501. doi: 10.1063/1.4906220 [100] SUN W, HE Q, HAO J, et al.. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 2011, 36(6):927-929. doi: 10.1364/OL.36.000927 [101] PFEIFFER C, GRBIC A. Bianisotropic metasurfaces for optimal polarization control:analysis and synthesis[J]. Physical Review Applied, 2014, 2(4):044011. doi: 10.1103/PhysRevApplied.2.044011 [102] PFEIFFER C, ZHANG C, RAY V, et al.. High performance bianisotropicmetasurfaces:asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2):023902. doi: 10.1103/PhysRevLett.113.023902 [103] GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307. doi: 10.1126/science.1235399 [104] CHEN H, WANG J, MA H, et al.. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. J. Applied Physics, 2014, 115(15):154504. doi: 10.1063/1.4869917 [105] DAI Y, REN W, CAI H, et al.. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7):7465-7472. doi: 10.1364/OE.22.007465 [106] MINOVICH A E, MIROSHNICHENKO A E, BYKOV A Y, et al.. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 2015, 9(2):195-213. doi: 10.1002/lpor.201400402/full [107] CUI Y, HE Y, JIN Y, et al.. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4):495-520. doi: 10.1002/lpor.201400026/pdf [108] GENEVET P, CAPASSO F. Holographic optical metasurfaces:a review of current progress[J]. Reports on Progress in Physics, 2015, 78(2):24401. doi: 10.1088/0034-4885/78/2/024401 [109] GU J, SINGH R, LIU X, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3:1151. doi: 10.1038/ncomms2153 [110] WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139 [111] HUIDOBRO P A, KRAFT M, MAIER S A, et al.. Graphene as a tunable anisotropic or isotropic plasmonic metasurface[J]. ACS Nano, 2016, 10(5):5499-5506. doi: 10.1021/acsnano.6b01944 [112] DABIDIAN N, DUTTA-GUPTA S, KHOLMANOV I, et al.. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 2016, 16(6):3607-3615. doi: 10.1021/acs.nanolett.6b00732 [113] LI Z, YU N. Modulation of mid-infrared light using graphene-metal plasmonic antennas[J]. Applied Physics Letters, 2013, 102(13):131108. doi: 10.1063/1.4800931 [114] KATS M A, BLANCHARD R, GENEVET P, et al.. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material[J]. Optics Letters, 2013, 38(3):368-370. doi: 10.1364/OL.38.000368 [115] YIN X, SCH FERLING M, MICHEL A U, et al.. Active chiral plasmonics[J]. Nano Letters, 2015, 15(7):4255-4260. doi: 10.1021/nl5042325