留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学自由曲面面形检测技术

张磊 刘东 师途 杨甬英 李劲松 俞本立

张磊, 刘东, 师途, 杨甬英, 李劲松, 俞本立. 光学自由曲面面形检测技术[J]. 中国光学(中英文), 2017, 10(3): 283-299. doi: 10.3788/CO.20171003.0283
引用本文: 张磊, 刘东, 师途, 杨甬英, 李劲松, 俞本立. 光学自由曲面面形检测技术[J]. 中国光学(中英文), 2017, 10(3): 283-299. doi: 10.3788/CO.20171003.0283
ZHANG Lei, LIU Dong, SHI Tu, YANG Yong-ying, LI Jing-song, YU Ben-li. Optical free-form surfaces testing technologies[J]. Chinese Optics, 2017, 10(3): 283-299. doi: 10.3788/CO.20171003.0283
Citation: ZHANG Lei, LIU Dong, SHI Tu, YANG Yong-ying, LI Jing-song, YU Ben-li. Optical free-form surfaces testing technologies[J]. Chinese Optics, 2017, 10(3): 283-299. doi: 10.3788/CO.20171003.0283

光学自由曲面面形检测技术

基金项目: 

国家自然科学基金资助项目 61675005

国家自然科学基金资助项目 61440010

安徽省自然科学基金资助项目 1508085MF118

安徽省科技攻关项目 1501041136

国家重点研发专项 2016YFC0302202

安徽大学博士科研启动项目 J01003208

详细信息
    作者简介:

    张磊(1987-), 男, 安徽舒城人, 博士, 讲师, 主要从事非球面和自由曲面检测、干涉仪研制及应用、光学设计等方面的研究。E-mail:optzl@ahu.edu.cn

    通讯作者:

    张磊, E-mail:optzl@ahu.edu.cn

  • 中图分类号: TQ171.65;TN247;TH741

Optical free-form surfaces testing technologies

Funds: 

National Natural Science Foundation of China 61675005

National Natural Science Foundation of China 61440010

Anhui Natural Science Foundation 1508085MF118

Science and Technology Key Project of Anhui Province 1501041136

National Key Research and Development Projects 2016YFC0302202

The Doctoral Start-up Foundation of Anhui University J01003208

  • 摘要: 光学自由曲面因其表面自由度较大,可以针对性地提供或矫正不同的轴上或轴外像差,同时满足现代光学系统高性能、轻量化和微型化的要求,逐渐成为现代光学工程领域的热点。自由曲面的检测技术已经成为制约其应用的最重要因素,而目前精密光学自由曲面的检测手段仍然沿用非球面检测方法。本文回顾了近年来的自由曲面检测发展历程,对目前主流的非接触式检测方法(微透镜阵列法,结构光三维检测法,相干层析术,干涉检测法)进行了重点介绍;总结了非球面检测方法运用到自由曲面检测中的技术难点,同时结合这些技术难点,展望了自由曲面检测的未来发展新趋势,主要集中在非旋转对称像差的动态补偿、分区域像差的回程误差校准及子孔径拼接技术。

     

  • 图 1  夏克-哈特曼传感法检测自由曲面原理

    Figure 1.  Principle of Shark-Hartmann wavefront sensor in free-form surface test

    图 2  夏克-哈特曼传感的检测限制

    Figure 2.  Testing limitation of Shark-Hartmann wavefront sensor

    图 3  面结构光三维检测基本原理

    Figure 3.  Principle of surface structured light 3D measurement

    图 4  美国Catholic大学条纹投影技术设备

    Figure 4.  Device of fringe projection in Catholic university

    图 5  条纹反射设备

    Figure 5.  Devices of fringe reflection

    图 6  SS-OCT系统原理

    Figure 6.  Principle diagram of SS-OCT system

    图 7  计算全息法检测非球面原理

    Figure 7.  Principle of aspheric surfaces metrology by CGH

    图 8  典型CGH示意图

    Figure 8.  Examples of CGH

    图 9  部分零位干涉检测原理

    Figure 9.  Principle of partial null interferometry

    图 10  部分零位干涉检测的干涉图畸变

    Figure 10.  Distortion of interferograms in the partial null interferometry

    图 11  TWI原理与设备

    Figure 11.  Principle and device of TWI

    图 12  QED公司CSSI设备原理

    Figure 12.  CSSI device of QED

    图 13  可变零位器及其对子孔径干涉图的影响

    Figure 13.  VON and the subaperture interferograms

    图 14  ASSI原理

    Figure 14.  ASSI principle

    图 15  VON可提供的像差补偿

    Figure 15.  Aberrations compensation of VON

    图 16  反向旋转的Zernike面板示意图

    Figure 16.  Schematic diagram of counter-rotating Zernike plates

    图 17  非常规子孔径

    Figure 17.  Irregular subapertures

  • [1] TRICARD M. Practical examples of freeform optics[C]. Renewable Energy and the Environment Congress, OSA, 2013, FT3B.2:T2B-T3B.
    [2] MIÑANO J C, BENÍTEZ P, SANTAMARÍA A. Free-form optics for illumination[J]. Opt. Rev., 2009, 16(2):99-102. doi: 10.1007/s10043-009-0017-4
    [3] ASLANOV E, DOSKOLOVICH L L, MOISEEV M A. Thin LED collimator with free-form lens array for illumination applications[J]. Appl. Optics, 2012, 51(30):7200-7205. doi: 10.1364/AO.51.007200
    [4] HUA H. Past and future of wearable augmented reality displays and their applications[J]. SPIE, 2014, 9186:918600-918612. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1919482
    [5] CURATU C, HONG H, ROLLAND J. Dual-purpose lens for an eye-tracked projection head-mounted display[J]. SPIE, 2007, 6342:63420X-7.
    [6] HOWARD J M, WOLBACH S. Improving the performance of three-mirror imaging systems with Freeform Optics[C]. Freeform Optics, OSA, 2013, FT2B.6:T2B-T6B.
    [7] ROLT S, KIRBY A K, ROBERTSON D J. Metrology of complex astigmatic surfaces for astronomical optics[J]. SPIE, 2010, 7739:139-144. http://cat.inist.fr/?aModele=afficheN&cpsidt=23440340
    [8] 张新, 许英朝.光学自由曲面的检测方法[J].中国光学, 2008, 1(1):92-99. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA2008Z1015.htm

    ZHANG X, XU Y. Study on free-form optical testing[J]. Chinese Optics, 2008, 1(1):92-99.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA2008Z1015.htm
    [9] 李圣怡, 陈善勇, 戴一帆.自由曲面光学器件检测技术[J].纳米技术与精密工程, 2005, 3(2):126-136. http://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200502009.htm

    LI SH Y, CHEN SH Y, DAI Y F. Inspection of free-form optics[J]. Nanotechnology and Precision Engineering, 2005, 3(2):126-136.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200502009.htm
    [10] NEAL D R, ARMSTRONG D J, TURNER W T. Wavefront sensors for control and process monitoring in optics manufacture[J]. SPIE, 1997, 2993:211-220.
    [11] PULASKI P D, ROLLER J P, NEAL D R. Measurement of aberrations in microlenses using a Shack-Hartmann wavefront sensor[J]. SPIE, 2002, 4767:44-52. http://www.lumetrics.com/wp-content/uploads/2015/09/Measurement-1.pdf
    [12] JEONG T M, MENON M, YOON G. Measurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor[J]. Appl. Optics, 2005, 44(21):4523-4527. doi: 10.1364/AO.44.004523
    [13] GUO W, ZHAO L, TONG C S, et al.. Adaptive centroid-finding algorithm for freeform surface measurements[J]. Appl. Optics, 2013, 52(10):75-83. doi: 10.1364/AO.52.000D75
    [14] 吴青青, 张效栋, 房丰洲, 等.基于波前传感法的立方相位板面形测量[J].光学技术, 2014(2):105-112. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201402003.htm

    WU Q, ZHANG X, FANG F, et al.. Shape measurement of the cubic phase plate with wavefront sensing technology[J]. Optical Technique, 2014(2):105-112.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201402003.htm
    [15] 赵必玉. 高精度面结构光三维测量方法研究[D]. 成都: 电子科技大学, 2015.

    ZHAO B Y. High acuracy surface structured light projection three dimensional measurement[D]. Chengdu:University of Electronic Science and Technology of China, 2015.(in Chinese)
    [16] NGUYEN H, NGUYEN D, WANG Z, et al.. Real-time, high-accuracy 3D imaging and shape measurement[J]. Appl. Optics, 2014, 54(1):A9-A17.
    [17] WANG Z, DU H, BI H. Out-of-plane shape determination in generalized fringe projectionprofilometry[J]. Opt. Express, 2006, 14(25):12122-12133. doi: 10.1364/OE.14.012122
    [18] DU H, WANG Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system[J]. Opt. Lett., 2007, 32(16):2438-2440. doi: 10.1364/OL.32.002438
    [19] HOANG T, PAN B, NGUYEN D, et al.. Generic gamma correction for accuracy enhancement in fringe-projection profilometry[J]. Opt. Lett., 2010, 35(12):1992-1994. doi: 10.1364/OL.35.001992
    [20] VO M, WANG Z, HOANG T, et al.. Flexible calibration technique for fringe-projection-based three-dimensional imaging[J]. Opt. Lett., 2010, 35(19):3192-3194. doi: 10.1364/OL.35.003192
    [21] WANG Z, NGUYEN D A, BARNES J C. Some practical considerations in fringe projection profilometry[J]. Optics & Lasers in Engineering, 2010, 48(2):218-225.
    [22] WANG Z, DU H, PARK S, et al.. Three-dimensional shape measurement with a fast and accurate approach[J]. Appl. Optics, 2009, 48(6):1052-1061. doi: 10.1364/AO.48.001052
    [23] WANG Z, HANB. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Opt. Lett., 2004, 29(14):1671-1673. doi: 10.1364/OL.29.001671
    [24] ZHANG S, HUANG P S. Novel method for structured light system calibration[J]. Opt. Eng., 2006, 45(8):83601. doi: 10.1117/1.2336196
    [25] ZHANG S, HUANG P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method[J]. SPIE, 2005, 6000:60000E-12.
    [26] HUANG P S, ZHANG C, CHIANG F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Opt. Eng., 2003, 42(1):163-168. doi: 10.1117/1.1525272
    [27] 徐红兵, 任乃飞.基于Atos的光学扫描测量[J].工具技术, 2006, 40(11):74-77. doi: 10.3969/j.issn.1000-7008.2006.11.025

    XU H, REN N. Measuring based on Atos optical scanner[J]. Tool Engineering, 2006, 40(11):74-77.(in Chinese) doi: 10.3969/j.issn.1000-7008.2006.11.025
    [28] 张潇予. 基于ATOS扫描的异形件形貌检测与逆向技术研究[D]. 长春: 长春理工大学, 2014.

    ZHANG X Y. Based on the atos profiled morphorpholgy detection and reverse technology research[D]. Changchun:Changchun University of Science and Technology, 2014.(in Chinese)
    [29] ZUO C, CHEN Q, GU G, et al.. High-speed three-dimensional profilometry for multiple objects with complex shapes[J]. Opt. Express, 2012, 20(17):19493-19510. doi: 10.1364/OE.20.019493
    [30] ZHONG M, SU X, CHEN W, et al.. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning[J]. Opt. Express, 2014, 22(26):31620-31634. doi: 10.1364/OE.22.031620
    [31] XIAO Y L, XUE J, SU X. Robust self-calibration three-dimensional shape measurement in fringe-projection photogrammetry[J]. Opt. Lett., 2013, 38(5):694-696. doi: 10.1364/OL.38.000694
    [32] OLESCH E, HÄUSLER G, WÖRNLEIN A, et al.. Deflectometric measurement of large mirrors[J]. Advanced Optical Technologies, 2014, 3(3):335-343.
    [33] SU T, MALDONADO A, SU P, et al.. Instrument transfer function of slope measuring deflectometry systems[J]. Appl. Optics, 2015, 54(10):2981-2990. doi: 10.1364/AO.54.002981
    [34] SPECK A, ZELZER B, KANNENGIEβER M, et al.. Inspection of freeform intraocular lens topography by phase measuring deflectometric methods[J]. Appl. Optics, 2013, 52(18):4279-4286. doi: 10.1364/AO.52.004279
    [35] HUANG L, NG C S, ASUNDI A K. Fast full-field out-of-plane deformation measurement using fringe reflectometry[J]. Optics & Lasers in Engineering, 2012, 50(4):529-533. https://www.researchgate.net/publication/241079493_Fast_full-field_out-of-plane_deformation_measurement_using_fringe_reflectometry
    [36] PAN B, XIE H, WANG Z. Equivalence of digital image correlation criteria for pattern matching[J]. Appl. Optics, 2010, 49(28):5501-5509. doi: 10.1364/AO.49.005501
    [37] PAN B, XIE H, WANG Z, et al.. Study on subset size selection in digital image correlation for speckle patterns[J]. Opt. Express, 2008, 16(10):7037-7048. doi: 10.1364/OE.16.007037
    [38] TANG Y, SU X, HU S. Measurement based on fringe reflection for testing aspheric optical axis precisely and flexibly[J]. Appl. Optics, 2011, 50(31):5944-5948. doi: 10.1364/AO.50.005944
    [39] HÄUSLER G, FABER C, ETTL S. Deflectometry vs. interferometry[J]. SPIE, 2013, 8788:87881C. https://www.deepdyve.com/lp/spie/deflectometry-vs-interferometry-yLvTE2nmIH
    [40] YAO J, ROLLAND J P. Freeform optics metrology using optical coherence tomography[C]. Optical Fabrication and Testing, 2014, DOI:10.1364/OFT2014.OW3B.4:W3B-W4B.
    [41] YAO J, XU D, ROLLAND J P. Freeform metrology using swept-source optical coherence tomography with custom pupil-relay precision scanning configuration[J]. SPIE, 2015, 9633:96331A. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2461986
    [42] DI X, YAO J, ZHAO N, et al.. Scanning customized Swept-source Optical Coherence Tomography (SS-OCT) for the metrology of freeform optical surfaces[C]. Frontiers in Optics, 2016, DOI:10.1364/FIO.2016.FW5H.6.
    [43] 师途, 杨甬英, 张磊, 等.非球面光学元件的面形检测技术[J].中国光学, 2014, 7(1):26-46. http://www.chineseoptics.net.cn/CN/abstract/abstract9094.shtml

    SHI T, YANG Y, ZHANG L, et al.. Surface testing methods of aspheric optical elements[J]. Chinese J. Optics, 2014, 7(1):26-46.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9094.shtml
    [44] OFFNER A. A null corrector for paraboloidal mirrors[J]. Appl. Optics, 1963, 2(2):153-155. doi: 10.1364/AO.2.000153
    [45] VEZIN W R. Wavefront errors in the small lens dall null-test-corrigendum[J]. J. British Astronomical Association, 1982:92. http://adsabs.harvard.edu/abs/1982JBAA...92..145V
    [46] MACGOVERN A J, WYANT J C. Computer generated holograms for testing optical elements[J]. Appl. Optics, 1971, 10(3):619-624. doi: 10.1364/AO.10.000619
    [47] LIU D, YANG Y, TIAN C, et al.. Practical methods for retrace error correction in nonnull aspheric testing[J]. Opt. Express, 2009, 17(9):7025-7035. doi: 10.1364/OE.17.007025
    [48] 高峰, 朱建华, 黄奇忠, 等.电子束直写计算全息图[J].中国激光, 2001, 28(6):556-558. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200106021.htm

    GAO F, ZHU J, HUANG Q, et al.. Computer-generated hologram fabricated by electron-beam direct-writing[J]. Chinese J. Lasers, 2001, 28(6):556-558.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200106021.htm
    [49] 李明. 基于CGH的非球面混合补偿检测及离轴光学系统装调的关键技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    LI M. Research on key technology of hybrid null testing of aspheric mirror and off-axis optical system alignment based on CGH[D]. Changchun:Changchun Institute of optics, fine mechanics and Physics, 2015.(in Chinese)
    [50] ZHOU P, BURGE J H. Fabrication error analysis and experimental demonstration for computer-generated holograms[J]. Appl. Optics, 2007, 46(5):657-663. doi: 10.1364/AO.46.000657
    [51] ZHAO C, ZEHNDER R, BURGE J H, et al.. Testing an off-axis parabola with a CGH and a spherical mirror as null lens[J]. Optical Manufacturing & Testing VI, 2005:5869. http://www.loft.optics.arizona.edu/
    [52] PETERHÄNSEL S, PRUSS C, OSTEN W. Phase errors in high line density CGH used for aspheric testing:beyond scalar approximation[J]. Opt. Express, 2013, 21(10):11638-11651. doi: 10.1364/OE.21.011638
    [53] REICHELT S, PRUSS C, TIZIANI H J. Absolute interferometric test of aspheres by use of twin computer-generated holograms[J]. Appl. Optics, 2003, 42(22):4468-4479. doi: 10.1364/AO.42.004468
    [54] FENG J, DENG C, XING T. Design of aspheric surfaces testing system based on computer-generated holograms[J]. SPIE, 2012, 8418:84180R-9. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1380787
    [55] FENG J, DENG C, XING T. Design and location deviation of the computer generated holograms used for aspheric surface testing[J]. SPIE, 2013, 8788:878820-7. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1687473
    [56] 赵龙波, 张志宇, 朱德燕, 等.用于非球面检验的激光直写高精度计算全息图制作[J].激光与光电子学进展, 2014(11):122-128. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201411016.htm

    ZHAO L B, ZHANG ZH Y, ZHU D Y, et al.. Fabrication of high precision computer generated hologram for aspheric surface testing by laser-direct writing[J]. Laser & Optoelectronics Progress, 2014(11):122-128.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201411016.htm
    [57] 卢振武, 李凤有, 刘华, 等.利用曲面计算全息图进行凸面非球面检测[J].光电子·激光, 2004, 15(9):1088-1090. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200409016.htm

    LU ZH W, LI F Y, LIU H, et al.. Testing the convex aspheric surface by using CGH on curved surface[J]. J. Optoelectronics·Laser, 2004, 15(9):1088-1090.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200409016.htm
    [58] 席庆奎, 朱日宏, 陈磊, 等.计算全息用于非球面检测的方法[J].激光杂志, 2004, 25(6):67-69. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGGY200609001612.htm

    XI Q K, ZHU R H, CHEN L, et al.. Methods on testing an aspheric with a computer generated hologram[J]. Laser Journal, 2004, 25(6):67-69.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGGY200609001612.htm
    [59] 王小鹏, 高志山, 马骏, 等.非球面测量中零位计算全息的测量不确定度分析研究[J].光学学报, 2011, 31(1):111-115. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201101021.htm

    WANG X P, GAO ZH SH, MA J, et al.. Investigation of measurement uncertainty of aspheric surface based on null-computer-generated holography[J]. Acta Optica Sinica, 2011, 31(1):111-115.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201101021.htm
    [60] KINO M, KURITA M. Interferometric testing for off-axis aspherical mirrors with computer-generated holograms[J]. Appl. Optics, 2012, 51(19):4291-4297. doi: 10.1364/AO.51.004291
    [61] 苏萍, 谭峭峰, 康果果, 等.自由曲面零补偿计算全息图离散相位的B样条拟合[J].光学学报, 2010(6):1767-1771. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201006047.htm

    SU P, TAN Q F, KANG G G, et al.. B-spline interpolation of scattered phase data of computer generated hologram for null test of freeform surface[J]. Acta Optica Sinica, 2010(6):1767-1771.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201006047.htm
    [62] LIU H, LU Z, LI F, et al.. Using curved hologram to test large-aperture convex surface[J]. Opt. Express, 2004, 12(14):3251-3256. doi: 10.1364/OPEX.12.003251
    [63] LIU H, LU Z, LI F, et al.. Design of a novel hologram for full measurement of large and deep convex aspheric surfaces[J]. Opt. Express, 2007, 15(6):3120-3126. doi: 10.1364/OE.15.003120
    [64] 黎发志, 郑立功, 闫锋, 等.自由曲面的CGH光学检测方法与实验[J].红外与激光工程, 2012, 41(4):1052-1056. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201204039.htm

    LI F ZH, ZHENG L G, YAN F, et al.. Optical testing method and its experiment on freeform surface with computer-generated hologram[J]. Infrared and Laser Engineering, 2012, 41(4):1052-1056.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201204039.htm
    [65] 朱德燕, 张学军.高精度相位型计算全息图的设计[J].光学学报, 2015, 35(7):174-180. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201507025.htm

    ZHU D, ZHANG X. Design of high-precision phase computer-generated-hologram[J]. Acta Optica Sinica, 2015, 35(7):174-180.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201507025.htm
    [66] 黄亚, 马骏, 朱日宏, 等.基于计算全息的光学自由曲面测量不确定度分析[J].光学学报, 2015(11):156-164. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201511020.htm

    HUANG Y, MA J, ZHU R H, et al.. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 2015(11):156-164.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201511020.htm
    [67] LIU H, ZHU Q, HAO Q. Design of novel part-compensating lens used in aspheric testing[J]. SPIE, 2003, 5253:480-484. http://cat.inist.fr/?aModele=afficheN&cpsidt=15759788
    [68] SULLIVAN J J, GREIVENKAMP J E. Design of partial nulls for testing of fast aspheric surfaces[J].SPIE, 2007, 6671:66710W. http://cat.inist.fr/?aModele=afficheN&cpsidt=20673277
    [69] LIU D, YANG Y, LUO Y, et al.. Non-null interferometric aspheric testing with partial null lens and reverse optimization[J]. SPIE, 2009, 7426:74260M-8. https://www.researchgate.net/publication/252766898_Non-null_interferometric_aspheric_testing_with_partial_null_lens_and_reverse_optimization
    [70] LIU D, SHI T, ZHANG L, et al.. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer[J]. Appl. Optics, 2014, 53(24):5538-5546. doi: 10.1364/AO.53.005538
    [71] 师途, 刘东, 张磊, 等.非球面非零位检测的逆向优化面形重构[J].光学学报, 2014(6):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201406024.htm

    SHI T, LIU D, ZHANG L, et al.. Reverse optimization reconstruction method for aspheric testing in a nonnull interferometer[J]. Acta Optica Sinica, 2014(6):143-150.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201406024.htm
    [72] GARBUSI E, PRUSS C, LIESENER J, et al.. New technique for flexible and rapid measurement of precision aspheres[J]. SPIE, 2007, 6616:661629-11. http://cat.inist.fr/?aModele=afficheN&cpsidt=20507783
    [73] GARBUSI E, PRUSS C, OSTEN W. Interferometer for precise and flexible asphere testing[J]. Opt. Lett., 2008, 33(24):2973-2975. doi: 10.1364/OL.33.002973
    [74] BAER G, SCHINDLER J, PRUSS C, et al.. Correction of misalignment introduced aberration in non-null test measurements of free-form surfaces[J]. J. European Optical Society Rapid Publications, 2013, 8(23):6480-6484.
    [75] BAER G, SCHINDLER J, PRUSS C, et al.. Fast and flexible non-null testing of aspheres and free-form furfaces with the tilted-wave-interferometer[J]. Int. J. Optomechatroni., 2014, 8(4):242-250. doi: 10.1080/15599612.2014.942925
    [76] 荣四海. 点光源阵列多重波面自由曲面检测系统设计与研究[D]. 南京: 南京理工大学, 2013.

    RONG S H. Design and research of the point source multi-wavefront interferometer system[D]. Nanjing:Nanjing University of Science & Technology, 2013.(in Chinese)
    [77] 沈华. 基于多重倾斜波面的光学自由曲面非零位干涉测量关键技术研究[D]. 南京: 南京理工大学, 2014.

    SHEN H.Research on key techniques of tilted wave Interferometer used in the measurement of freeform surfaces[D]. Nanjing:Nanjing University of Science & Technology, 2014.(in Chinese)
    [78] KIN C J, WYANT J C. Subaperture test of a large flat or a fast aspheric surface[J]. J. Optical Society of America, 1981, 71:1587. http://adsabs.harvard.edu/abs/1981JOSA...71.1587K
    [79] MURPHY P, FLEIG J, FORBES G, et al.. Subaperture stitching interferometry for testing mild aspheres[J]. Optics & Photonics, 2006:62930J. http://cat.inist.fr/?aModele=afficheN&cpsidt=18559944
    [80] CHOW WW, LAWRENCE G N. Method for subaperture testing interferogram reduction[J]. Opt. Lett., 1983, 8(9):68-470. http://adsabs.harvard.edu/abs/1983OptL....8..468C
    [81] MURPHY P, FORBES G, FLEIG J, et al.. Stitching interferometry:a flexible solution for surface metrology[J]. Optics & Photonics News, 2003, 14(5):38-43. http://cat.inist.fr/?aModele=afficheN&cpsidt=14809897
    [82] 程灏波.精密光学元件先进测量与评价[M].北京:科学出版社, 2014.

    CHENG H B. Advanced Measurement and Evaluate of Precision Optical Elements[M]. Beijing:Science Press, 2014.(in Chinese)
    [83] TRICARD M, KULAWIEC A, BAUER M, et al.. Subaperture stitching interferometry of high-departure aspheres by incorporating a variable optical null[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1):547-550. doi: 10.1016/j.cirp.2010.03.125
    [84] MURPHY P, DEVRIES G, FLEIG J, et al.. Measurement of high-departure aspheric surfaces using subaperture stitching with variable null optics[J]. SPIE, 2009, 7426:74260P-10. https://www.deepdyve.com/lp/spie/measurement-of-high-departure-aspheric-surfaces-using-subaperture-YAowkhbszI
    [85] 闫力松. 子孔径拼接干涉检测光学镜面算法的研究[D]. 北京: 中国科学院大学, 2015.

    YAN L S. Research on the algorithm testing optical mirror by subaperture stitching interferometry[D]. Beijing:University of Chinese Academy of Sciences, 2015.(in Chinese)
    [86] 陈善勇. 非球面子孔径拼接干涉测量的几何方法研究[D]. 长沙: 国防科学技术大学, 2006.

    CHEN SH Y. Geometrical approach to subaperture stitching interferometry for aspheric surfaces[D]. Changsha:National University of Defense Technology, 2006.(in Chinese)
    [87] LIU Y M, LAWRENCE G N, KOLIOPOULOS C L. Subaperture testing of aspheres with annular zones[J]. Appl. Optics, 1988, 27(21):4504-4513. doi: 10.1364/AO.27.004504
    [88] MELOZZI A M, PEZZATI L, MAZZONI A. Testing aspheric surfaces using multiple annular interferograms[J]. Opt. Eng., 1993, 32(32):1073-1079.
    [89] GRANADOS-AGUST IAN F I, ESCOBAR-ROMERO J F, CORNEJO-RODR IAGUEZ A. Testing Parabolic Surfaces with Annular Subaperture Interferograms[J]. Opt. Rev., 2004, 11(2):82-86. doi: 10.1007/s10043-004-0082-7
    [90] HOU X, WU F, YANG L, et al.. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces[J]. Appl. Optics, 2006, 45(15):3442-3455. doi: 10.1364/AO.45.003442
    [91] HOU X, WU F, YANG L, et al.. Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method[J]. Opt. Express, 2007, 15(20):12890-12899. doi: 10.1364/OE.15.012890
    [92] CHEN S, LI S, DAI Y, et al.. Experimental study on subaperture testing with iterative stitching algorithm[J]. Opt. Express, 2008, 16(7):4760-4765. doi: 10.1364/OE.16.004760
    [93] 王孝坤, 王丽辉, 张学军.子孔径拼接干涉法检测非球面[J].光学精密工程, 2007, 15(2):192-198. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201007034.htm

    WANG X K, WANG L H, ZHANG X J. Testing asphere by subaperture stitching interferometric method[J]. Opt. Precision Eng., 2007, 15(2):192-198.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201007034.htm
    [94] KVCHEL M F. Interferometric measurement of rotationally symmetric aspheric surfaces[J]. SPIE, 2009, 7389:738916-11.
    [95] 张磊, 田超, 刘东, 等.非球面非零位环形子孔径拼接干涉检测技术[J].光学学报, 2014, 34(8):156-164. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185937.htm

    ZHANG L, TIAN CH, LIU D, et al.. Non-null annular subaperture stitching interferometry for aspheric test[J]. Acta Optica Sinica, 2014, 34(8):156-164.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185937.htm
    [96] 田超. 非球面非零位环形子孔径拼接干涉检测技术与系统研究[D]. 杭州: 浙江大学, 2013.

    TIAN CH. Measurement of Aspheric Surfaces by Non-null Annular Subaperture Stitching Interferometry[D]. Hangzhou:Zhejiang University, 2013.(in Chinese)
    [97] ZHANG L, TIAN C, LIU D, et al.. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Appl. Optics, 2014, 53(25):5755-5762. doi: 10.1364/AO.53.005755
    [98] ZHANG L, LIU D, SHI T, et al.. Aspheric subaperture stitching based on system modeling[J]. Opt. Express, 2015, 23(15):19176-19188. doi: 10.1364/OE.23.019176
    [99] WANG X, ZHENG L, ZHANG B, et al.. Test of an off-axis asphere by subaperture stitching interferometry[J]. SPIE, 2009, 7283:72832J-6.
    [100] CHEN S, ZHAO C, DAI Y, et al.. Reconfigurable optical null based on counter-rotating Zernike plates for test of aspheres[J]. Opt. Express, 2014, 22(2):1381-1386. doi: 10.1364/OE.22.001381
    [101] 张磊. 光学自由曲面子孔径拼接干涉检测技术[D]. 杭州: 浙江大学, 2016.

    ZHANG L.Optical free-form surface subaperture stitching interferometry[D]. Hangzhou:Zhejiang University, 2016.(in Chinese)
    [102] LIU D, ZHOU Y, BAI J, et al.. Aspheric and free-form surfaces test with non-null subaperture stitching interferometry[C]. SPIE/COS Photonics Asia2016, 2016:10021N.
  • 加载中
图(17)
计量
  • 文章访问数:  8508
  • HTML全文浏览量:  2702
  • PDF下载量:  1601
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回