-
摘要: 太赫兹波段占有宇宙微波背景(CMB)辐射以后宇宙空间近一半的光子能量,该波段在天文学研究中具有不可替代的作用,因此太赫兹天文学的研究,具有极其重要的科学意义。本文系统介绍了基于超高灵敏度太赫兹超导探测技术的太赫兹相干探测器发展状况,包括超导隧道结混频器(SIS)和超导热电子混频器(HEB),以及以超导动态电感探测器(MKIDs)和超导相变边缘探测器(TES)为代表的非相干探测器的研究。在此基础上,展望了该领域未来发展趋势,对我国太赫兹天文探测技术的发展具有一定的参考意义。Abstract: Nearly half of the photon energy is occupied in Terahertz waveband after the cosmic microwave background (CMB) radiation in space, which plays an irreplaceable role in the study of astronomy. So the terahertz astronomy research has extremely important scientific significance. In this paper, we introduce the development of the terahertz coherent detectors bosed on ultra high sensitivity superconducting terahertz detection technology, including superconducting tunnel junction the mixer (SIS) and superconducting hot electron mixer (HEB), and non coherent detectors such as superconducting dynamic inductance detector (MKIDs) and superconducting transition edge detector (TES). The future development trend is also prospected. The review for superconducting THz detectors has the reference significance for the development of astronomical terahertz detection technique in our country.
-
Key words:
- THz /
- superconductor /
- coherent detection /
- incoherent detection
-
图 3 (a)2.7 THz量子级联激光器结构示意图,(b)模拟仿真整形前2.7 THz量子级联激光器远场辐射方向图,(c)模拟仿真整形后2.7 THz量子级联激光器远场辐射方向图和(d)实验测得整形后2.7 THz量子级联激光器远场辐射方向图
Figure 3. (a) Structure diagram of the 2.7 THz QCL, (b) far field radiation pattern of the 2.7 THz QCL before the simulation shaping, (c) far field radiation pattern of the 2.7 THz QCL after the simulation shaping and (d) far field radiation pattern of the 2.7 THz QCL after the testing
-
[1] IVISON R J, SMAIL I, BARGERA J, et al.. The diversity of SCUBA-selected galaxies[J]. Mon. Not. R. Astron. Soc., 2000, 315:209-222. doi: 10.1046/j.1365-8711.2000.03376.x [2] PHILLIPSTG, KEENE J. Submillimeter astronomy[J]. IEEE, 1992, 80:1662-1678. doi: 10.1109/5.175248 [3] ZMUIDZINAS J, RICHARDS P L. Superconducting detectors and mixers for millimeter and submillimeter astrophysics[J]. IEEE, 2004, 92:1598-1616. https://www.researchgate.net/publication/2986371_Superconducting_Detectors_and_Mixers_for_Millimeter_and_Submillimeter_Astrophysics [4] Kraus J D. Radio Astronomy, 2nd ed.[D]. Powell, OH:Cygnus-Quasar Books, 1986. [5] TUCKER J R, FELDMAN M J. Quantum detection at millimeter wavelengths[J]. Rev. Mod. Phys., 1985, 57:1055-1113. doi: 10.1103/RevModPhys.57.1055 [6] JACKSON B D, DE LANGE G, ZIJLSTRA T, et al.. Low-noise 0.8-0.96-and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel Space Observatory[J]. IEEE Trans. Microwave Theory Tech., 2006, 54:547-557. doi: 10.1109/TMTT.2005.862717 [7] KARPOV A, MILLER D, RICE F, et al.. Low noise 1THz 1.4THz mixers using Nb/Al-AlN/NbTiN SIS junctions[J]. IEEE Trans. Appl. Supercond., 2007, 17:343-346. doi: 10.1109/TASC.2007.898277 [8] TONG C Y E, BLUNDELL R. Theory of series-connected distributed SIS mixers with ultra-wide instantaneous bandwidth[C]. Proceedings of 17th Int. Space Terahertz Technol. Symp., Harvard, USA, 2006:35-38. [9] LI J, TAKEDA M, WANG ZH, et al. Low-noise 0.5 THz all-NbN superconductor-insulator-superconductor mixer for submillimeter wave astronomy[J]. Appl. Phys. Letts., 2008, 92:222504. doi: 10.1063/1.2940235 [10] LI J, TAKEDA M, WANG Z H, et al.. Characterization of the mixing performance of all-NbN superconducting tunnel junctions at 0.5 THz[J]. IEEE Trans. Appl. Supercond., 2009, 19(3):417-422. doi: 10.1109/TASC.2009.2018504 [11] GERSHENZON E M, GOL'TSMAN G N, GOGIDZEI G, et al.. Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state[J]. Sov. Phys. Superconductivity, 1990, 3:1582-1597. https://www.researchgate.net/publication/229432132_Millimeter_and_submillimeter_range_mixer_based_on_electron_heating_of_superconducting_films_in_the_resistive_state [12] PROBER D E. Superconducting terahertz mixer using a transition-edge microbolometer[J]. Appl. Phys. Lett., 1993, 62(17):2119-2121. doi: 10.1063/1.109445 [13] REN Y, HOVENIER J N, HIGGINS R, et al.. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz[J]. Applied Physics Letters, 2011, 98:231109. doi: 10.1063/1.3599518 [14] REN Y, HOVENIER J N, HIGGINS R, et al.. Terahertz heterodyne spectrometer using a quantum cascade laser[J]. Appl. Phys. Lett., 2010, 97:161105. doi: 10.1063/1.3502479 [15] REN Y, GAO J R, et al.. Heterodyne gas cell measurements at 2.9 THz using a quantum cascade laser as local oscillator[J]. SPIE, 2010, 7741:774118-7. http://resolver.tudelft.nl/uuid:6796de1a-46ce-4119-b868-504be5536c0c [16] MARNIEROS S, BERGE L, JUILLARD A, et al.. Low temperature specific heat of NbSi Anderson insulator measured by cryogenic bolometry[J]. Physica B, 1999, 259-261:862-863. doi: 10.1016/S0921-4526(98)00703-0 [17] PAJOTJ F, PRELE D, ZHONG J Q, et al. NbSi TES array and readout:development and characterization[J]. EEE Trans. Appl. Supercond., 2011, 21(3):192-19. doi: 10.1109/TASC.2010.2091230 [18] MARTINO J, PRELE D, PIAT M, et al.. Characterization of NbSi TES bolometers:preliminary results[J]. J. Low Temp. Phys., 2012, 167(3/4):176-181. https://www.researchgate.net/publication/257590638_Characterization_of_NbSi_TES_Bolometers_Preliminary_Results?_sg=kpnCGZZ6x9iJ0YYFSAtp5DKOmjTvdiGRWkx3fPXRME961ojkVT3vXIh4wcm7Og2nj58XP0WBcWqPYxsGrwAD0Q [19] ZHANG W, ZHONG JQ, MIAOW, et al.. Electrical characteristics of superconducting Ti Transition edge sensor[J]. J. Low Temp. Phys., 2015, 181(5/6):1-6. https://www.researchgate.net/profile/Masataka_Ohkubo/publication/245119082_Characteristics_of_Ti_films_for_transition-edge_sensor_microcalorimeters/links/55a596ec08aef604aa0456af.pdf [20] ZHANG W, ZHONG J Q, MIAO W, et al.. Characterization of a superconducting NbSi Transition edge sensor for TESIA[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):2100204. [21] MAZIN B A. Microwave kinetic inductance detectors[D]. California:California Institute of Technology, 2004. [22] HOLLAND W. Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy[J]. SPIE, 2010, 7854:78540U. [23] BASELMANS J. Kinetic inductance detectors[J]. J. Low Temp. Phys., 2012, 167(3):292-304. [24] SHI SH C, ZHANG W, LI J, et al.. A THz superconducting imaging array developed for the DATE5 Telescope[J]. J. Low Temp. Phys., 2016, 184(3):1-5. https://www.researchgate.net/publication/284095420_A_THz_Superconducting_Imaging_Array_Developed_for_the_DATE5_Telescope [25] LI J, YANG J P, LIN ZH H, et al.. Development of an 8×8 CPW microwave kinetic inductance detector (MKID) Array at 0.35 THz[J]. J. Low Temp. Phys., 2016, 184(1):103-107. https://www.researchgate.net/publication/285257176_Development_of_an_88_CPW_microwave_kinetic_inductance_detectors_MKIDs_Array_at_035_THz