留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹偏振测量系统及其应用

鄂轶文 黄媛媛 徐新龙 汪力

鄂轶文, 黄媛媛, 徐新龙, 汪力. 太赫兹偏振测量系统及其应用[J]. 中国光学(中英文), 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
引用本文: 鄂轶文, 黄媛媛, 徐新龙, 汪力. 太赫兹偏振测量系统及其应用[J]. 中国光学(中英文), 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
Citation: E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098

太赫兹偏振测量系统及其应用

基金项目: 

国家重点基础研究计划(973计划)资助项目 2014CB339800

国家自然科学基金资助项目 11374240

国家自然科学基金资助项目 11374358

教育部博士点基金资助项目 201310110007

详细信息
    作者简介:

    鄂轶文(1988-), 女, 内蒙古包头人, 博士研究生, 2010年于中央民族大学获得学士学位, 主要从事太赫兹与物质相互作用的研究。E-mail:eyiwen@iphy.ac.cn

    通讯作者:

    徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn

  • 中图分类号: O441;TB97

Polarization sensitive terahertz measurements and applications

Funds: 

Supported by National Key Basic Research Program 2014CB339800

National Natural Science Foundation of China 11374240

National Natural Science Foundation of China 11374358

Ph.D. Programs Foundation of Ministry of Education of China 201310110007

More Information
  • 摘要: 麦克斯韦方程中的介质响应特性一般由本构关系中的介电函数εω)和磁导率μω)来描述,对于介质中传播的电磁场,通常存在两个独立的本征传播模式,它们是齐次麦克斯韦方程组的特解,各自具有特定的色散关系和偏振态。如果介质中传播的电磁场为两个本征模分量的线性迭加,其偏振态将会随着传播的过程而改变。常见的现象有各向异性晶体中的双折射、超材料中的偏振调制效应、自然界中手性材料的旋光响应以及外磁场作用下产生的Faraday效应等。本文从测量方法、数据处理、测量精度等方面介绍太赫兹时域偏振检测系统及其发展状况,特别是利用线栅、超材料以及光学手段调制太赫兹电场偏振态的方法。对近几年太赫兹偏振检测系统在分析手性超材料、太赫兹圆二色谱以及Faraday效应等实验中的应用进行了总结和讨论。最后展望了太赫兹偏振检测系统未来进一步的发展空间及应用前景。

     

  • 图 1  常见太赫兹偏振检测方法

    Figure 1.  Usual terahertz polarization measurement method

    图 2  太赫兹椭偏仪[28]

    Figure 2.  Terahertz ellipsometer[28]

    图 3  任意电场偏振椭圆

    Figure 3.  Arbitrary electric field ellipse

    图 4  双锁相放大器反射型太赫兹偏振检测系统示意图[33]

    Figure 4.  Diagram of terahertz polarization measurement reflection system with double lock-in amplifiers[33]

    图 5  (a)无基底[40]和(b)有基底[41]的太赫兹金属线栅偏振片

    Figure 5.  Terahertz metal wire grid polarizer (a) without[40] and (b) with[41] substrate

    图 6  利用半导体空间光调制器调节太赫兹电场偏振态[52]

    Figure 6.  Modulate terahertz electric field polarization state with semiconductor spatial light modulator[52]

    图 7  利用气压制动调制超材料单元结构变形量以及手性特征[53]:(a)单元结构及其两种变形模式(b)实验示意图(c)通过气压控制单元结构变形量的原理图

    Figure 7.  Using a pneumatic force to modulate deformation of unit cell structure and chirality[53]; (a) unit cell and its two deformation modes, (b) experimental Diagram, (c) a schematic diagram of the pressure application for changing the deformation

    图 8  利用空间光调制器调节800 nm激光的偏振和强度从而获得不同偏振态的太赫兹脉冲[55];图中(a)、(b)和(c)依次为线偏振,左旋圆偏振以及右旋圆偏振太赫兹电场

    Figure 8.  Using spatial light modulator to modulate intensity and polarization of 800 nm laser to generate arbitrary polarization terahertz pulse[55]; (a), (b) and (c) are linearly, left-handed and right-handed polarized terahertz electric field, respectively

    图 9  空气等离子体加螺旋电场(左)后辐射圆偏振太赫兹脉冲(右)[57]

    Figure 9.  Appling spiral electric filed (left) on air plasma to radiate circularly polarized terahertz pulse (right)[57]

    图 10  双层手性材料实现负折射率并利用800 nm激光进行调制[62]

    Figure 10.  Negative refraction index realized by double layer chiral metamaterial and modulate the value using 800 nm laser[62]

    图 11  非对称透射超材料;(a)和(b)为电场分别从样品正反两面入射所得的透射谱[63],‘±’表示圆偏振电场的手性

    Figure 11.  Asymmetric transmission of metamaterial; (a) and (b) indicate that electric filed is incident from either side of the sample respectively[63], the sign '±' indicates the chirality of the circularly polarized electric field

    图 12  多层超材料利用F-P腔实现超高效率的偏振转换和异常折射[64];图(b)为样品(a)的反射谱;图(e)为样品(d)的在1.4 THz的透射率随透射角的变化情况;图(c)为样品(d)中间的超材料结构

    Figure 12.  Ultra high efficient polarization conversion and abnormal transmission in mutilayer metamaterial[64]; (b) is reflection spectroscopy of sample (a); (e) is the transmission of another sample (d), which depends on transmission angle. (c) is the specific structure of middle layer in sample d

    图 13  GaAs/AlGaAs异质结的Faraday效应[70];(a)y方向太赫兹波形随磁场强度变化的情况;(b)太赫兹频段偏振方向以及椭圆率随磁场变化的情况

    Figure 13.  Faraday effect in GaAs/AlGaAs heterojunction[70]; (a) THz waveform in y direction measured with indicated magnetic field; (b) corresponding polarization direction and ellipticity

    图 14  费米能级分别为60 meV (a)和70 meV (b)单层石墨烯的量子Hall效应[71]

    Figure 14.  Quantum Hall effect of single layer graphene with 60 meV (a) and 70 meV (b) Fermi energy respectively[71]

  • [1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [2] DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. J. Opt. Soc. Am. A, 2001, 18(7):1562-1571. doi: 10.1364/JOSAA.18.001562
    [3] JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1):124-166. http://orbit.dtu.dk/en/publications/terahertz-spectroscopy-and-imaging--modern-techniques-and-applications(48eb87c2-9425-43ba-9bba-10d35ef83e59)/export.html
    [4] SHEN Y C, UPADHYA P C, LINFIELD E H, et al.. Temperature-dependent low-frequency vibrational spectra of purine and adenine[J]. Appl. Phys. Lett., 2003, 82(14):2350-2352. doi: 10.1063/1.1565680
    [5] TAKAHASHI M. Terahertz vibrations and hydrogen-bonded networks in crystals[J]. Crystals, 2014, 4(2):74. doi: 10.3390/cryst4020074
    [6] 潘学聪, 姚泽翰, 徐新龙, 等.太赫兹波段超材料的制作、设计及应用[J].中国光学, 2013, 6(3):283-296. http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV

    PAN X C, YAO Z H, XU X L, et al.. Fabrication, design and application of THz metamaterials[J]., 2013, 6(3):283-296.(in Chinese) http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV
    [7] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. doi: 10.1126/science.1096796
    [8] HUANG S-W, GRANADOS E, HUANG W R, et al.. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 2013, 38(5):796-798. doi: 10.1364/OL.38.000796
    [9] LIU K, KOULOUKLIDIS A D, PAPAZOGLOU D G, et al.. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams[J]. Optica, 2016, 3(6):605-608. doi: 10.1364/OPTICA.3.000605
    [10] KAMPFRATH T, SELL A, KLATT G, et al.. Coherent terahertz control of antiferromagnetic spin waves[J]. Nat. Photon., 2011, 5(1):31-34. doi: 10.1038/nphoton.2010.259
    [11] SCHUBERT O, HOHENLEUTNER M, LANGER F, et al.. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nat. Photon., 2014, 8(2):119-123. doi: 10.1038/nphoton.2013.349
    [12] LANGE C, MAAG T, HOHENLEUTNER M, et al.. Extremely nonperturbative nonlinearities in gaas driven by atomically strong terahertz fields in gold metamaterials[J]. Phys. Rev. Lett., 2014, 113(22):227401. doi: 10.1103/PhysRevLett.113.227401
    [13] SEIFERTT, JAISWALS, MARTENS U, et al.. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nat. Photon., 2016, 10(7):483-488. doi: 10.1038/nphoton.2016.91
    [14] FINNERAN I A, GOOD J T, HOLLAND D B, et al.. Decade-spanning high-precision terahertz frequency comb[J]. Phys. Rev. Lett., 2015, 114(16):163902. doi: 10.1103/PhysRevLett.114.163902
    [15] CHEN H-T, PADILLA W J, ZIDE J M O, et al.. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600. doi: 10.1038/nature05343
    [16] GU J, SINGH R, LIU X, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat. Commun., 2012, 3:1151. doi: 10.1038/ncomms2153
    [17] ZHANG S, PARK Y S, LI J S, et al.. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2):023901. doi: 10.1103/PhysRevLett.102.023901
    [18] KONG J A. Electromagnetic Wave TheoryJohn[M]. Wiley and Sons Ltd, 1986.
    [19] BARRON L D. Molecular Light Scattering and Optical Activity[M]. 2nd ed. Cambridge Universtiy Press, 2004.
    [20] BAI B, SVIRKO Y, TURUNEN J, et al.. Optical activity in planar chiral metamaterials:theoretical study[J]. Physical Review A, 2007, 76(2):023811. doi: 10.1103/PhysRevA.76.023811
    [21] HUANG Y Y, YAO Z H, WANG Q, et al.. Coupling Tai Chi Chiral metamaterials with strong optical activity in terahertz region[J]. Plasmonics, 2015, 10(4):1005-1011. doi: 10.1007/s11468-015-9892-7
    [22] 徐新龙, 黄媛媛, 姚泽翰, 等.手性超材料的设计、电磁特性及应用[J].西北大学学报, 2016, 46(1):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm

    XU X L, HUANG Y Y, YAO Z H, et al.. The design, electromagnetic properties and applications of chiral metamaterials[J]. J. Northwest University, 2016, 46(1):1-12.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm
    [23] JEON T-I, GRISCHKOWSKY D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy[J]. Applied Physics Letters, 1998, 72(23):3032-3034. doi: 10.1063/1.121531
    [24] NASHIMA S, MORIKAWA O, TAKATA K, et al.. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy[J]. Applied Physics Letters, 2001, 79(24):3923-3925. doi: 10.1063/1.1413498
    [25] PASHKIN A, KEMPA M, NĚMEC H, et al.. Phase-sensitive time-domain terahertz reflection spectroscopy[J]. Review of Scientific Instruments, 2003, 74(11):4711-4717. doi: 10.1063/1.1614878
    [26] NAGASHIMA T, TANI M, HANGYO M. Polarization-sensitive THz-TDS and its application to anisotropy sensing[J]. J. Infrared Millimeter and Terahertz Waves, 2013, 34(11):740-775. doi: 10.1007/s10762-013-0020-5
    [27] PLANKEN P C M, NIENHUYS H-K, BAKKER H J, et al.. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe[J]. J. Opt. Soc. Am. B, 2001, 18(3):313-317. doi: 10.1364/JOSAB.18.000313
    [28] NAGASHIMA T, HANGYO M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24):3917-3919. doi: 10.1063/1.1426258
    [29] MATSUMOTO N, HOSOKURA T, NAGASHIMA T, et al.. Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry[J]. Optics Letters, 2011, 36(2):265-267. doi: 10.1364/OL.36.000265
    [30] NESHAT M, ARMITAGE N P. Terahertz time-domain spectroscopic ellipsometry:instrumentation and calibration[J]. Opt. Express, 2012, 20(27):29063-29075. doi: 10.1364/OE.20.029063
    [31] TOMPKINS H G, IRENE E A. Handbook of Ellipsometry[M]. Norwich, NY:William Andrew Publishing, 2005.
    [32] GOLDSTEIN D. Polarized Light[M]. 2nd edMarcel Dekker Ltd, 2003.
    [33] IWATA T, UEMURA H, MIZUTANI Y, et al.. Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating[J]. Opt. Express, 2014, 22(17):20595-20606. doi: 10.1364/OE.22.020595
    [34] LÜ Z, ZHANG D, MENG C, et al.. Polarization-sensitive air-biased-coherent-detection for terahertz wave[J]. Applied Physics Letters, 2012, 101(8):081119. doi: 10.1063/1.4748171
    [35] CASTRO-CAMUS E, LLOYD-HUGHES J, JOHNSTON M B, et al.. Polarization-sensitive terahertz detection by multicontact photoconductive receivers[J]. Applied Physics Letters, 2005, 86(25):254102. doi: 10.1063/1.1951051
    [36] MAKABE H, HIROTA Y, TANI M, et al.. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna[J]. Opt. Express, 2007, 15(18):11650-11657. doi: 10.1364/OE.15.011650
    [37] BULGAREVICH D S, WATANABE M, SHIWA M, et al.. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy[J]. Opt. Express, 2014, 22(9):10332-10340. doi: 10.1364/OE.22.010332
    [38] NAHATA A, WELING A S, HEINZ T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling[J]. Applied Physics Letters, 1996, 69(16):2321-2323. doi: 10.1063/1.117511
    [39] NEMOTO N, HIGUCHI T, KANDA N, et al.. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses[J]. Opt. Express, 2014, 22(15):17915-17929. doi: 10.1364/OE.22.017915
    [40] ADE P A R, COSTLEY A E, CUNNINGHAM C T, et al.. Free-standing grids wound from 5μm diameter wire for spectroscopy at far-infrared wavelengths[J]. Infrared Physics, 1979, 19(5):599-601. doi: 10.1016/0020-0891(79)90080-0
    [41] YAMADA I, TAKANO K, HANGYO M, et al.. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3):274-276. doi: 10.1364/OL.34.000274
    [42] COSTLEY A E, HURSEY K H, NEILL G F, et al.. Free-standing fine-wire grids:their manufacture, performance, and use at millimeter and submillimeter wavelengths[J]. J. Opt. Soc. Am., 1977, 67(7):979-981. doi: 10.1364/JOSA.67.000979
    [43] KYOUNG J, JANG E Y, LIMA M D, et al.. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10):4227-4231. doi: 10.1021/nl202214y
    [44] AKIMA N, IWASA Y, BROWN S, et al.. Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes[J]. Advanced Materials, 2006, 18(9):1166-1169. doi: 10.1002/(ISSN)1521-4095
    [45] REN L, PINT C L, ARIKAWA T, et al.. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J]. Nano Letters, 2012, 12(2):787-790. doi: 10.1021/nl203783q
    [46] XU X L, PARKINSON P, CHUANG K C, et al.. Dynamic terahertz polarization in single-walled carbon nanotubes[J]. Physical Review B, 2010, 82(8):085441. doi: 10.1103/PhysRevB.82.085441
    [47] HSIEH C-F, LAI Y-C, PAN R-P, et al.. Polarizing terahertz waves with nematic liquid crystals[J]. Optics Letters, 2008, 33(11):1174-1176. doi: 10.1364/OL.33.001174
    [48] WITHAYACHUMNANKUL W, ABBOTT D. Metamaterials in the Terahertz Regime[J]. IEEE Photonics Journal, 2009, 1(2):99-118. doi: 10.1109/JPHOT.2009.2026288
    [49] MARKOVICH D L, ANDRYIEUSKI A, ZALKOVSKIJ M, et al.. Metamaterial polarization converter analysis:limits of performance[J]. Applied Physics B, 2013, 112(2):143-152. doi: 10.1007/s00340-013-5383-8
    [50] LONGQING C, WEI C, ZHEN T, et al.. Manipulating polarization states of terahertz radiation using metamaterials[J]. New J. Physics, 2012, 14(11):115013. doi: 10.1088/1367-2630/14/11/115013
    [51] WU J, NG B, LIANG H, et al.. Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers[J]. Physical Review Applied, 2014, 2(1):014005. doi: 10.1103/PhysRevApplied.2.014005
    [52] KANDA N, KONISHI K, KUWATA-GONOKAMI M. All-photoinduced terahertz optical activity[J]. Optics Letters, 2014, 39(11):3274-3277. doi: 10.1364/OL.39.003274
    [53] KAN T, ISOZAKI A, KANDA N, et al.. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nat. Commun., 2015, 6:8422. doi: 10.1038/ncomms9422
    [54] SHAN J, DADAP J I, HEINZ T F, Circularly polarized light in the single-cycle limit:the nature of highly polychromatic radiation of defined polarization[J]. Opt. Express, 2009, 17(9):7431-7439. doi: 10.1364/OE.17.007431
    [55] SATO M, HIGUCHI T, KANDA N, et al.. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat. Photon., 2013, 7(9):724-731. doi: 10.1038/nphoton.2013.213
    [56] KIM K Y, TAYLOR A J, GLOWNIA J H, et al.. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat. Photon., 2008, 2(10):605-609. doi: 10.1038/nphoton.2008.153
    [57] LU X, ZHANG X C. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes[J]. Physical Review Letters, 2012, 108(12):123903. doi: 10.1103/PhysRevLett.108.123903
    [58] RAMAKRISHNA S A. Physics of negative refractive index materials[J]. Rep. Prog. Phys., 2005, 68(2):449-521. doi: 10.1088/0034-4885/68/2/R06
    [59] PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700):1353-1355. doi: 10.1126/science.1104467
    [60] PLUM E, ZHOU J, DONG J, et al.. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3):035407. doi: 10.1103/PhysRevB.79.035407
    [61] WANG B N, ZHOU J F, KOSCHNY T, et al.. Chiral metamaterials:simulations and experiments[J]. J. Opt. A-Pure Appl. Opt., 2009, 11(11):114003. doi: 10.1088/1464-4258/11/11/114003
    [62] ZHOU J, CHOWDHURY D R, ZHAO R, et al.. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B, 2012, 86(3):035448. doi: 10.1103/PhysRevB.86.035448
    [63] SINGH R, PLUM E, MENZEL C, et al.. Terahertz metamaterial with asymmetric transmission[J]. Physical Review B, 2009, 80(15):153104 doi: 10.1103/PhysRevB.80.153104
    [64] GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307. doi: 10.1126/science.1235399
    [65] JING X, GALAN J, RAMIAN G, et al.. Terahertz circular dichroism spectroscopy of biomolecules[J]. SPIE, 2003, 5268:19-26.
    [66] ARIKAWA T, WANG X, BELYANIN A A, et al.. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics[J]. Opt. Express, 2012, 20(17):19484-19492. doi: 10.1364/OE.20.019484
    [67] CRASSEE I, LEVALLOIS J, WALTER A L, et al.. Giant Faraday rotation in single-and multilayer graphene[J]. Nat. Phys., 2011, 7(1):48-51. doi: 10.1038/nphys1816
    [68] SHUVAEV A M, ASTAKHOV G V, PIMENOV A, et al.. Giant magneto-optical faraday effect in hgte thin films in the terahertz spectral range[J]. Physical Review Letters, 2011, 106(10):107404. doi: 10.1103/PhysRevLett.106.107404
    [69] PRUISKEN A M M. Universal singularities in the integral quantum hall effect[J]. Physical Review Letters, 1988, 61(11):1297-1300. doi: 10.1103/PhysRevLett.61.1297
    [70] IKEBE Y, MORIMOTO T, MASUTOMI R, et al.. Optical hall effect in the integer quantum hall regime[J]. Physical Review Letters, 2010, 104(25):256802. doi: 10.1103/PhysRevLett.104.256802
    [71] SHIMANO R, YUMOTO G, YOO J Y, et al.. Quantum Faraday and Kerr rotations in graphene[J]. Nat. Commun., 2013, 4:1841. doi: 10.1038/ncomms2866
  • 加载中
图(14)
计量
  • 文章访问数:  3009
  • HTML全文浏览量:  650
  • PDF下载量:  811
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-27
  • 修回日期:  2016-11-17
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回