留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹量子级联激光器的实时成像研究进展

谭智勇 万文坚 黎华 曹俊诚

谭智勇, 万文坚, 黎华, 曹俊诚. 基于太赫兹量子级联激光器的实时成像研究进展[J]. 中国光学(中英文), 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
引用本文: 谭智勇, 万文坚, 黎华, 曹俊诚. 基于太赫兹量子级联激光器的实时成像研究进展[J]. 中国光学(中英文), 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
TAN Zhi-yong, WAN Wen-jian, LI Hua, CAO Jun-cheng. Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
Citation: TAN Zhi-yong, WAN Wen-jian, LI Hua, CAO Jun-cheng. Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068

基于太赫兹量子级联激光器的实时成像研究进展

doi: 10.3788/CO.20171001.0068
基金项目: 

国家重点基础研究发展计划(973计划)资助项目 2014CB339803

国家自然科学基金资助项目 61131006

国家自然科学基金资助项目 61321492

国家自然科学基金资助项目 61575214

国家自然科学基金资助项目 61405233

国家自然科学基金资助项目 2011YQ150021

中国科学院“百人计划” 

中科院创新团队国际合作伙伴计划:“高迁移率材料工程”创新团队项目以及上海市科学技术委员会 14530711300

中科院创新团队国际合作伙伴计划:“高迁移率材料工程”创新团队项目以及上海市科学技术委员会 15DZ0500103

详细信息
    作者简介:

    谭智勇(1982-), 男, 湖南宜章人, 博士, 副研究员, 硕士生导师, 2010年于中科院上海微系统与信息技术研究所获得博士学位, 主要从事太赫兹材料光谱及量子器件测试与应用方面的研究。E-mail:zytan@mail.sim.ac.cn

    通讯作者:

    曹俊诚, E-mail:jccao@mail.sim.ac.cn

  • 中图分类号: O434.3;O432.1+2;O436.2

Progress in real-time imaging based on terahertz quantum-cascade lasers

Funds: 

National Program on Key Basic Research Projects of China 2014CB339803

National Natural Science Foundation of China 61131006

National Natural Science Foundation of China 61321492

National Natural Science Foundation of China 61575214

National Natural Science Foundation of China 61405233

Major National Development Project of Scientific Instrument and Equipment 2011YQ150021

Hundred Talent Program of the China Academy Sciences 

International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology 14530711300

International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology 15DZ0500103

More Information
  • 摘要: 太赫兹(THz)实时成像是THz技术中颇具潜力的一个领域,具有成像速度快、成像分辨率高等特点,基于THz量子级联激光器(QCL)的实时成像系统是其中最重要的一种,系统体积小、重量轻、成像信噪比高等特点使其在实际应用中具有独特的优势。本文主要介绍了THz QCL器件及其实时成像系统的研究进展,采用超半球高阻硅透镜改善了THz QCL的输出激光,实现了准高斯光束输出,搭建了基于二维摆镜消干涉技术的THz实时成像系统,单帧成像光斑面积45 mm×30 mm,实现了对刀片、药片的实时成像演示,成像分辨率优于0.5 mm;最后对成像系统激光源、成像光路和探测端的改进以及成像效果的改善方面进行了综述,并探讨了THz实时成像系统未来的发展趋势及其在材料分析和生物医学成像方面的应用前景。

     

  • 图 1  THz量子级联激光器工作原理示意图

    Figure 1.  Schematic diagram of working principle of terahertz quantum-cascade laser

    图 2  不同时期THz QCL的最高工作温度

    Figure 2.  Maximum operating temperature of THz QCL in different years

    图 3  纸质信封中铅笔字可见光照片(a)及其在封闭信封内THz透射(b)和反射(c)成像效果对比和大拇指指纹的可见光照片(d)和THz反射成像(e)效果对比[15]

    Figure 3.  Pencil letters written on inside of paper security envelope at visible frequencies. (a) Terahertz transmission mode, (b) one frame, and (c) terahertz reflection mode. (d) Visible frequency thumb print and (e) terahertz reflection mode image of thumb[15]

    图 4  干钟荚的可见光(a)照片和THz实时成像结果(b)[31]

    Figure 4.  Visible photo (a) and THz image (b) of a dried seed pod (down) [31]

    图 5  经过反射镜后返回的THz光、红外光和可见光成像光斑对比图[33]

    Figure 5.  Comparison of the returning light through the reflecting mirror at terahertz, longwave infrared and visible frequencies (a) without black smoke, (b) with black smoke[33]

    图 6  头发丝(a)和微管中乙醇和水(b)的THz显微实时成像结果[8]

    Figure 6.  Real-time THz microscope imaging of human hair (a) and ethanol and water (b)[8]

    图 7  单面金属波导THz QCL输出激光经过离轴抛物面镜后的二维分布图

    Figure 7.  Beam pattern of the terahertz light emitting from a single facet metal waveguide with an off-axis parabolic mirror

    图 8  未采用(a)和采用(b)二维摆镜消干涉部件后对头发丝、金属丝样品的实时成像[38]

    Figure 8.  Real-time imaging of human hair and metal wire without (a) and with (b) two dimensional wobbling mirrors[38]

    图 9  经过超半球高阻硅透镜耦合输出后的准高斯束二维能量分布图

    Figure 9.  Two dimensional energy distribution of quasi-Gaussian THz light beam collimated by a hyper-hemispherical high-resistivity silicon lens

    图 10  基于小型斯特林制冷机的THz QCL光源装置(插图)及其输出功率曲线

    Figure 10.  Stirling cooler based THz QCL light source apparatus (inset) and its light power curve with the drive current

    图 11  刀片和不同大小药片的THz实时图像

    Figure 11.  THz real-time images of blade and tablets with different sizes

  • [1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photon., 2007, 1:97-105. doi: 10.1038/nphoton.2007.3
    [2] DEAN P, VALAVANIS A, KEELEY J, et al.. Terahertz imaging using quantum cascade lasers-a review of systems and applications[J]. J. Physics D:Applied Physics, 2014, 47:374008. doi: 10.1088/0022-3727/47/37/374008
    [3] WALLACE V P, MACPHERSON E, ZEITLER J A, et al.. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation[J]. J. Opt. Soc. Am. A, 2008, 25:3120-3133. doi: 10.1364/JOSAA.25.003120
    [4] 蔡禾, 郭雪娇, 和挺, 等.太赫兹技术及其应用研究进展[J].中国光学, 2010, 15(3):209-222. http://www.chineseoptics.net.cn/CN/abstract/abstract8446.shtml

    CAI H, GUO X J, HE T, et al.. Terahertz wave and its new applications[J]. Chinese Optics, 2010, 15(3):209-222.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8446.shtml
    [5] KUMAR S. Recent progress in terahertz quantum cascade lasers[J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(1):38-47. doi: 10.1109/JSTQE.2010.2049735
    [6] 叶全意, 杨春.光子学太赫兹源研究进展[J].中国光学, 2012, 5(1):1-11. http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml

    YE Q Y, YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics, 2012, 5(1):1-11.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml
    [7] ODA N, YONEYAMA H, SASAKI T, et al.. Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays[J]. SPIE, 2008, 6940:69402Y. doi: 10.1117/12.781630
    [8] ODA N, ISHI T, MORIMOTO T, et al.. Real-time transmission-type terahertz microscope with palm size terahertz camera and compact quantum cascade laser[J]. SPIE, 2012, 8496:84960Q. http://dspace.mit.edu/openaccess-disseminate/1721.1/87070
    [9] CHAN W L, DIEBEL J AND MITTLEMAN D M. Imaging with terahertz radiation[J]. Rep. Prog. Phys., 2007, 70:1325-1379. doi: 10.1088/0034-4885/70/8/R02
    [10] HU B B, NUSS M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20:1716-1718. doi: 10.1364/OL.20.001716
    [11] DARMO J, TAMOSIUNAS V, FASCHING G, et al.. Imaging with a terahertz quantum cascade laser[J]. Opt. Express, 2004, 12:1879-1884. doi: 10.1364/OPEX.12.001879
    [12] KIM S M, HATAMI F, HARRIS J S, et al.. Biomedical terahertz imaging with a quantum cascade laser[J]. Appl. Phys. Lett., 2006, 88:153903. doi: 10.1063/1.2194229
    [13] 李琦, 胡佳琦, 杨永发.太赫兹Gabor同轴数字全息二维再现像复原[J].光学精密工程, 2014, 22(8):2188-2195. doi: 10.3788/OPE.

    LI Q, HU J Q, YANG Y F. 2D reconstructed-image restoration of terahertz Gabor in-line digital holography[J]. Opt. Precision Eng., 2014, 22(8):2188-2195.(in Chinese) doi: 10.3788/OPE.
    [14] ROTHBART N, RICHTER H, WIENOLD M, et al.. Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror[J]. IEEE Trans. THz Sci. Technol., 2013, 3:617-624. doi: 10.1109/TTHZ.2013.2273226
    [15] LEE A W M, HU Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Opt. Lett., 2005, 30(19):2563-2565. doi: 10.1364/OL.30.002563
    [16] LEE A W M, WILLIAMS B S, KUMAR S, et al.. Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array[J]. IEEE Photon. Technol. Lett., 2006, 18(13):1415-1417. doi: 10.1109/LPT.2006.877220
    [17] K HLER R, TREDICUCCI A, BELTRAM F, et al.. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417:156-159. doi: 10.1038/417156a
    [18] AJILI L, SCALARI G, HOFSTETTER D, et al.. Continuous-wave operation of far-infrared quantum cascade lasers[J]. Electron. Lett., 2002, 38(25):1675-1676. doi: 10.1049/el:20021143
    [19] SCALARI G, WALTHER C, FISCHER M, et al.. THz and sub-THz quantum cascade lasers laser[J]. Photon. Rev., 2008, 3:45-66.
    [20] CHAN C W I, HU Q, RENO J L. Ground state terahertz quantum cascade lasers[J]. Appl. Phys. Lett., 2012, 101:151108. doi: 10.1063/1.4759043
    [21] WIENOLD M, R BEN B, SCHROTTKE L, et al.. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback[J]. Opt. Express, 2014, 22:3334-3348. doi: 10.1364/OE.22.003334
    [22] WANG X, SHEN C, JIANG T, et al.. High-power terahertz quantum cascade lasers with~0.23 W in continuous wave mode[J]. AIP Advances, 2016, 6:075210. doi: 10.1063/1.4959195
    [23] FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al.. Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling[J]. Opt. Express, 2012, 20:3866-3876. doi: 10.1364/OE.20.003866
    [24] LI L H, ZHU J X, CHEN L, et al.. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Opt. Express, 2015, 23(3):2720-2729. doi: 10.1364/OE.23.002720
    [25] VITIELLO M S, CONSOLINO L, BARTALINI S, et al.. Quantum-limited frequency fluctuations in a terahertz laser[J]. Nat. Photon., 2012, 6:525-528. doi: 10.1038/nphoton.2012.145
    [26] VITIELLO M S, TREDICUCCI A. Tunable emission in THz quantum cascade lasers[J]. IEEE Trans. THz Sci. Technol., 2011, 1:76-84. doi: 10.1109/TTHZ.2011.2159543
    [27] BR NDERMANN E, HAVENITH M, SCALARI G, et al.. Turn-key compact high temperature terahertz quantum cascade lasers:imaging and room temperature detection[J]. Opt. Express, 2006, 14:1829-1841. doi: 10.1364/OE.14.001829
    [28] RICHTER H, GREINER-B R M, PAVLOV S G, et al.. A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler[J]. Opt. Express, 2010, 18:10177-10187. doi: 10.1364/OE.18.010177
    [29] AMANTI M I, SCALARI G, BECK M, et al.. Stand-alone system for high-resolution, real-time terahertz imaging[J]. Opt. Express, 2012, 20:2772-2778. doi: 10.1364/OE.20.002772
    [30] 姚睿, 丁胜晖, 李琦, 等.2.52 THz面阵透射成像系统改进及分辨率分析[J].中国激光, 2011, 38(1):0111001. doi: 10.3788/CJL

    YAO R, DING SH J, LI Q, et al.. Improvement of 2.52 THz array transmission imaging system and resolution analysis[J]. Chinese J. Lasers, 2011, 38(1):0111001.(in Chinese) doi: 10.3788/CJL
    [31] LEE A W M, QIN Q, KUMAR S, et al.. Real-time terahertz imaging over a standoff distance (>25 meters)[J]. Appl. Phys. Lett., 2006, 89:141125. doi: 10.1063/1.2360210
    [32] BERGERON A, TERROUX M, MARCHESE L, et al.. Components, concepts, and technologies for useful video rate THz imaging[J]. SPIE, 2012, 8544:85440C.
    [33] HOSAKO I, SEKINE N, ODA N, et al.. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[J]. SPIE, 2011, 8023:80230A. https://www.researchgate.net/publication/252343260_A_real-time_terahertz_imaging_system_consisting_of_Terahertz_quantum_cascade_laser_and_uncooled_microbolometer_array_detector
    [34] ODA N, LEE A W M, ISHIA T, et al.. Proposal for real-time terahertz imaging system, with palm-size Terahertz camera and compact quantum cascade laser[J]. SPIE, 2012, 8363:83630A. http://adsabs.harvard.edu/abs/2012SPIE.8363E...4O
    [35] ADAM A J L, KA ALYNAS I, HOVENIER J N, et al.. Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions[J]. Appl. Phys. Lett., 2006, 88:151105. doi: 10.1063/1.2194889
    [36] AMANTI M I, FISCHER M, SCALARI G, et al.. Low divergence single-mode terahertz quantum cascade laser[J]. Nat. Photon., 2009, 3:586-590. doi: 10.1038/nphoton.2009.168
    [37] YU N, WANG Q J, KATS M A, et al.. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nat. Mater., 2010, 9:730-735. doi: 10.1038/nmat2822
    [38] ODA N, ISHI T, KURASHINA S, et al.. Palm-size and real-time terahertz imager, and its application to development of terahertz sources[J]. SPIE, 2013, 8716:871603. http://adsabs.harvard.edu/abs/2013SPIE.8716E..03O
  • 加载中
图(11)
计量
  • 文章访问数:  2518
  • HTML全文浏览量:  853
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 修回日期:  2016-10-12
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!