留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methodology for predicting optical system performance when subjected to static stresses

AL-LAHAM Radwan MOUSSELLY Mhd. Fawaz NAIM Mamoun

AL-LAHAMRadwan, MOUSSELLYMhd. Fawaz, NAIMMamoun. 静态应力作用下预测光学系统性能的计算方法[J]. 中国光学(中英文), 2016, 9(6): 678-686. doi: 10.3788/CO.20160906.0678
引用本文: AL-LAHAMRadwan, MOUSSELLYMhd. Fawaz, NAIMMamoun. 静态应力作用下预测光学系统性能的计算方法[J]. 中国光学(中英文), 2016, 9(6): 678-686. doi: 10.3788/CO.20160906.0678
AL-LAHAM Radwan, MOUSSELLY Mhd. Fawaz, NAIM Mamoun. Methodology for predicting optical system performance when subjected to static stresses[J]. Chinese Optics, 2016, 9(6): 678-686. doi: 10.3788/CO.20160906.0678
Citation: AL-LAHAM Radwan, MOUSSELLY Mhd. Fawaz, NAIM Mamoun. Methodology for predicting optical system performance when subjected to static stresses[J]. Chinese Optics, 2016, 9(6): 678-686. doi: 10.3788/CO.20160906.0678

静态应力作用下预测光学系统性能的计算方法

详细信息
  • 中图分类号: O438

Methodology for predicting optical system performance when subjected to static stresses

doi: 10.3788/CO.20160906.0678
More Information
    Corresponding author: AL-LAHAM Radwan(1976-), Master degree. His research interests are on optical design and optical me-trology. E-mail:eng.rad.laham@gmail.com
  • 摘要: 本文通过计算预测光学性能的方法表征在光学系统组装和外界环境因素影响下的光学系统灵敏度。该方法即通过调制传递函数来表征静态机械应力对光学物镜性能的影响。采用光学干涉仪对经过加工、组装且存在机械应力的光学物镜进行测试,并比较实验调制传递函数与计算模拟分析的调制传递函数。结果表明,计算结果与实验结果相符,证实了本文方法的有效性。

     

  • Figure 1.  General scheme for predicting optical performance through the static structural analysis[3]

    Figure 2.  Verification of optical system performance using a double-pass auto-collimation interferometer

    Figure 3.  Optical performance of the designed objective

    Figure 4.  One quarter of the lens

    Figure 5.  Stress-strain curve for aluminum material

    Figure 6.  Original surface deformation as a result of applied tension

    Figure 7.  Generated stresses due to a torque of 5 N m along y-axis

    Figure 8.  Expansion of deformed surface as a function of Zernike polynomials

    Figure 9.  Using Zemax to output MTF as a function of tensile torque

    Figure 10.  Torque tool and adapter of steel used in experiments

    Figure 11.  (a)Measuring setup using an interferometer; (b)resulted fringes when no tension was applied to the optical element

    Figure 12.  Applying a tension on the optical element

    Figure 13.  Diagrams of fringes errors of the optical system under test for several values of tensile torque

    Figure 14.  Computed MTF as function of tensile torque(solid circle); experimental MTF as function of tensile torque with deviation 2σ(solid rectangle)

    Table  1.   Parameters of the designed objective

    Surfaces numberRadius/mmThickness/mmOptical diameter/mmGlass material
    (Stop)187.57.560H-ZF52A
    2-305.538.75359.46Air
    385.70840.31H-BAK4
    4-88.51538.70H-ZF52A
    5192.3189.42536.24Air
    下载: 导出CSV

    Table  2.   Characteristics of the materials used in the modeling

    ParametersAluminumGlass
    Young modulus/(N·m-2)7.1×10109.67×1010
    Poisson′s ratio0.330.226
    下载: 导出CSV

    Table  3.   Tensile torques values as a function of retainer displacement

    Moment (N·m)Force (N)Displacement (μm)
    3.065130
    3.904 265.0732.4
    5.08284.734.8
    5.902 298.3736
    下载: 导出CSV

    Table  4.   Zernike coefficients for a set of tensile torques

    Tensile torque/(N·m)Piston(Z1) Third Sphere(Z9) Fifth Sphere(Z16)
    Surface 1Surface 2Surface 1Surface 2Surface 1Surface 2
    38.49×10-3-0.017 37.84×10-5-1.27×10-47.51×10-79.41×10-7
    45.43×10-3-3.14×10-31.88×10-4-7.40×10-53.49×10-72.51×10-7
    58.31×10-3-7.13×10-31.43×10-4-1.45×10-42.01×10-79.63×10-7
    60.012 5-0.031 71.35×10-4-1.62×10-42.47×10-72.82×10-7
    下载: 导出CSV

    Table  5.   MTF values at typical spatial frequencies obtained by computation and experiment

    6 N·m5 N·m4 N·m3 N·m
    Spatial frequencyMTF (computation)MTF (experiment)MTF (computation)MTF (experiment)MTF (computation)MTF (experiment)MTF (computation)MTF (experiment)
    01.0001.0001.0001.0001.0001.0001.0001.000
    62.50.7390.7910.6570.7170.6230.6580.5950.614
    1250.5100.5200.4090.4080.3550.4100.3120.278
    187.50.3640.3100.2760.2510.2250.2090.1860.130
    2500.3040.2680.2250.1920.1840.1600.1540.081
    312.50.2750.2510.2260.1890.1990.1400.1760.115
    3750.2310.2390.2100.1840.1970.1650.1870.179
    437.50.1360.1530.1170.1350.1060.0910.0990.125
    5000.0570.0710.0390.0660.0300.0540.0220.037
    562.50.0060.0150.0170.0170.0410.0220.0120.017
    6250.0000.0000.0000.0000.0000.0020.0000.002
    下载: 导出CSV
  • [1] KASUNIC K J. Optomechanical Systems Engineering[M]. New Jersey:John Wiley & Sons,Inc.,Hoboken,2015.
    [2] SCHWERTZ K,BURGE H. Field Guide to Optomechanical Design and Analysis[M], Bellingham:SPIE Press,2012.
    [3] DOYLE K B,GENBERG V L,MICHELSS G J. Integrated Optomechanical Analysis(2nd Edition)[M]. Bellingham:SPIE Press,2012.
    [4] KASUNIC K J,BURGE J,YODER P. Mounting of Optical Components[M]. Bellingham:SPIE Press,2013.
    [5] YODER P R. Parametric Investigations of Mounting-Induced Axial Contact Stresses in Individual Lens Elements[J]. SPIE,1993,1998:8-20. http://cn.bing.com/academic/profile?id=2115684958&encoded=0&v=paper_preview&mkt=zh-cn
    [6] SigFit is a product of Sigmadyne,Inc.,Rochester,New York[EB/OL]. http://www.sigmadyne.com.
    [7] GENBERG V,DOYLE K,MICHELS G. Making FEA results useful in optical analysis[J]. SPIE,2002,4769:24-33. http://cn.bing.com/academic/profile?id=2040583220&encoded=0&v=paper_preview&mkt=zh-cn
    [8] GENBERG V,DOYLE K,MICHELS G. Opto-Mechanical I/F for ANSYS[R]. Sigmadyne Company,2004:TT58.
    [9] DOYLE K B,GENBERG V L,MICHELS G J. Integrated optomechanical analysis of adaptive optical systems[J]. SPIE,2004,5178:20-25. http://cn.bing.com/academic/profile?id=2079749194&encoded=0&v=paper_preview&mkt=zh-cn
    [10] DOYLE K B,HOFFMAN J M,GENBERG V L,et al.. Stress Birefringence Modeling for Lens Design and Photonics[J]. SPIE,2002,4832:436-447. http://cn.bing.com/academic/profile?id=2037294897&encoded=0&v=paper_preview&mkt=zh-cn
    [11] DOYLE K,GENBERG V,MICHELS G,et al.. Numerical methods to compute optical errors due to stress birefringenc[J]. SPIE,2002,4769:34-42. http://cn.bing.com/academic/profile?id=2006713758&encoded=0&v=paper_preview&mkt=zh-cn
    [12] BOOTH M,WILSON T,SUN H B,et al.. Methods for the characterization of deformable membrane mirrors[J]. Applied Optics,2005,44(24):5131-5139. doi: 10.1364/AO.44.005131
    [13] GENBERG V,MICHELS G,DOYLE K. Orthogonality of zernike polynomials[J]. SPIE,2002,4771:33-40. http://cn.bing.com/academic/profile?id=2033573001&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Zemax Manual:Optical Design Program User's Guide 9-6-2009[M]. ZEMAX Development Corporation.
    [15] BUCKLEY-LEWIS D H. Friction behavior of glass and metals in contact with glass in various environments[R],Nasa Technical Note,1973,Nasa TN 0-7529.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  2229
  • HTML全文浏览量:  826
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 修回日期:  2016-07-19
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回