留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞艇红外探测系统探测高超声速目标性能研究

杨虹 张雅声 丁文哲

杨虹, 张雅声, 丁文哲. 飞艇红外探测系统探测高超声速目标性能研究[J]. 中国光学(中英文), 2016, 9(5): 596-605. doi: 10.3788/CO.20160905.0596
引用本文: 杨虹, 张雅声, 丁文哲. 飞艇红外探测系统探测高超声速目标性能研究[J]. 中国光学(中英文), 2016, 9(5): 596-605. doi: 10.3788/CO.20160905.0596
YANG Hong, ZHANG Ya-sheng, DING Wen-zhe. Detectability of airship infrared detection system to hypersonic vehicle[J]. Chinese Optics, 2016, 9(5): 596-605. doi: 10.3788/CO.20160905.0596
Citation: YANG Hong, ZHANG Ya-sheng, DING Wen-zhe. Detectability of airship infrared detection system to hypersonic vehicle[J]. Chinese Optics, 2016, 9(5): 596-605. doi: 10.3788/CO.20160905.0596

飞艇红外探测系统探测高超声速目标性能研究

doi: 10.3788/CO.20160905.0596
基金项目: 

国家高技术研究发展计划(863计划)资助 

详细信息
    作者简介:

    杨虹(1991-), 女, 四川绵竹人, 硕士研究生, 主要从事航天任务分析与设计方面的研究.E-mail:1558513572@qq.com

    通讯作者:

    张雅声(1974-), 女, 安徽淮南人, 博士, 教授, 博士生导师, 主要从事航天任务分析与设计方面的研究.E-mail:13521219203@139.com

  • 中图分类号: TN219

Detectability of airship infrared detection system to hypersonic vehicle

Funds: 

National High-tech R & D Program of China 

More Information
  • 摘要: 以X-51A为例,研究了飞艇红外探测系统对临近空间高超声速目标的探测性能。首先,根据飞行器的飞行状态和飞行高度建立了临近空间高超声速目标不同波段的红外辐射特性模型,以及随高度变化的目标背景红外辐射强度模型;其次,综合考虑飞行器与飞艇高度、地球曲率及红外辐射在大气中传播的波段选择性等因素,建立了红外辐射在临近空间大气中传播的透过率模型;在此基础上,建立了飞艇红外探测系统对高超声速目标的探测距离模型。通过仿真得到了临近空间高超声速目标在不同飞行状态下3个波段的红外辐射强度随目标飞行高度变化的曲线,以及飞艇红外探测系统对飞行器在不同飞行状态下3个红外辐射波段的探测能力。研究结果表明:飞艇红外探测系统对高超声速目标的有效探测距离可以达到百公里量级;当飞行器飞行状态一定时,随着飞行器飞行高度的增加,系统对目标的探测距离先增大后减小;与长波波段相比,中短波波段的探测距离更大,并给出了临近空间飞艇应尽量布置在海拔高度大于18km的高空中的部署建议。

     

  • 图 1  双斜程示意图

    Figure 1.  Sketch map of double inclined rule

    图 2  飞行器有动力段1~2.5 μm波段红外辐射强度随高度变化图

    Figure 2.  Variation curve of infrared radiation intensity of 1-2.5 μm band vs. height of the hypersonic vehicle when in powered phase

    图 3  飞行器有动力段3~5 μm波段红外辐射强度随高度变化图

    Figure 3.  Variation curve of infrared radiation intensity of 3-5 μm band vs. height of the hypersonic vehicle when in powered phase

    图 4  飞行器有动力段8~14 μm波段红外辐射强度随高度变化图

    Figure 4.  Variation curve of infrared radiation intensity of 8-14 μm band vs. height of the hypersonic vehicle when in powered phase

    图 5  飞行器无动力段1~2.5 μm波段红外辐射强度随高度变化图

    Figure 5.  Variation curve of infrared radiation intensity of 1-2.5 μm band vs. height of the hypersonic vehicle when in unpowered phase

    图 6  飞行器无动力段3~5 μm波段红外辐射强度随高度变化图

    Figure 6.  Variation curve of infrared radiation intensity of 3-5 μm band vs. height of the hypersonic vehicle when in unpowered phase

    图 7  飞行器无动力段8~14 μm波段红外辐射强度随高度变化图

    Figure 7.  Variation curve of infrared radiation intensity of 8-14 μm band vs. height of the hypersonic vehicle when in unpowered phase

    图 8  飞艇红外探测系统对飞行器有动力段1~2.5 μm波段探测能力

    Figure 8.  Detectability of airship infrared detection system to hypersonic vehicle in 1-2.5 μm band when in powered phase

    图 9  飞艇红外探测系统对飞行器有动力段3~5 μm波段探测能力

    Figure 9.  Detectability of airship infrared detection system to hypersonic vehicle in 3-5 μm band when in powered phase

    图 10  飞艇红外探测系统对飞行器有动力段8~14 μm波段探测能力

    Figure 10.  Detectability of airship infrared detection system to hypersonic vehicle in 8-14 μm band when in powered phase

    图 11  飞艇红外探测系统对飞行器无动力段1~2.5 μm波段探测能力

    Figure 11.  Detectability of airship infrared detection system to hypersonic vehicle in 1-2.5 μm band when in unpowered phase

    图 12  飞艇红外探测系统对飞行器无动力段3~5 μm波段探测能力

    Figure 12.  Detectability of airship infrared detection system to hypersonic vehicle in 3-5 μm band when in unpowered phase

    图 13  飞艇红外探测系统对飞行器无动力段8~14 μm波段探测能力

    Figure 13.  Detectability of airship infrared detection system to hypersonic vehicle in 8-14 μm band when in unpowered phase

    表  1  飞艇红外探测系统性能参数设置

    Table  1.   Performance parameter setting of airship infrared detection system

    探测系统参数名 符号/单位 参数数值
    红外探测器入射孔径 D0/m 0.79
    红外探测器焦距 f/m 1 000
    信号衰减因子 δ 0.707
    探测系统的噪声等效带宽 Δf/Hz 短波为20
    中波为100
    长波为1 000
    信噪比 fSNR/mm 5
    红外探测器的单个像元面积 Ad/μm2 900
    红外探测系统比探测率 D*/(W-1·m·Hz1/2) 短波7.5×109
    中波2.61×109
    长波4.63×108
    红外探测系统透射率 τ0 0.9
    下载: 导出CSV

    表  2  飞艇红外探测系统对高超声速目标有动力段的最大探测距离

    Table  2.   Maximum detection range of airship infrared detection system to hypersonic vehicle when in powered phase

    波段/μm 飞行器高度/km
    30 40 50 60 70
    1~2.5 1 782 1 890 2 020 1 985 1 979
    3~5 999 1 090 1 179 1 138 1 095
    8~14 349 373 397 392 385
    下载: 导出CSV

    表  3  飞艇红外探测系统对高超声速目标无动力段的最大探测距离

    Table  3.   Maximum detection range of airship infrared detection system to hypersonic vehicle when in unpowered phase

    波段/μm 飞行器高度/km
    30 40 50 60 70
    1~2.5 501 711 916 703 489
    3~5 577 699 807 715 601
    8~14 225 254 280 264 241
    下载: 导出CSV
  • [1] 徐蓉, 门涛, 张荣之.临近空间平台光电探测系统在空间态势感知中的应用[J].中国光学与应用光学, 2010, 03(6):546-553. http://d.wanfangdata.com.cn/Periodical/zggxyyygxwz201006003

    XU R, MEN T, ZHANG R ZH.Application of near space platform based photoelectric detecting system to space situation awareness[J].Chinese Optics, 2010, 3(6):546-553.(in Chinese) http://d.wanfangdata.com.cn/Periodical/zggxyyygxwz201006003
    [2] 肖松, 谭贤四, 王红, 等.地基雷达部署对探测临近空间高超声速目标影响研究[J].电子与信息学报, 2015, 7:1723-1728. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201507031.htm

    XIAO S, TAN X S, WANG H, et al..Detection performance assessment of near-space hypersonic target based on ground-based radar[J].J.Electronics & Information Technology, 2015, 7:1723-1728.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201507031.htm
    [3] 刘俊池, 李洪文, 王建立, 等.中波红外整层大气透过率测量及误差分析[J].光学精密工程, 2015, 23(6):1547-1557. doi: 10.3788/OPE.

    LIU J CH, LI H W, WANG J L, et al..Measurement of mid-infrared total atmospheric transmittance and its error analysis[J].Opt.Precision Eng., 2015, 23(6):1547-1557.(in Chinese) doi: 10.3788/OPE.
    [4] 李罗钢, 荆武兴, 高长生.基于预警卫星系统的临近空间飞行器跟踪[J].航空学报, 2014, 1:105-115. http://d.wanfangdata.com.cn/Periodical/hkxb201401010

    LI L G, JING W X, GAO CH SH.Tracking near space vehicle using early-warning satellite[J].Chinese J.Aeronautics, 2014, 1:105-115.(in Chinese) http://d.wanfangdata.com.cn/Periodical/hkxb201401010
    [5] 方义强, 樊祥, 程正东, 等.晴空背景下地基红外告警系统作用距离[J].红外与激光工程, 2013, 7:1654-1659. http://d.wanfangdata.com.cn/Periodical/hwyjggc201307001

    FANG Y Q, FAN X, CHENG ZH D, et al..Operating range of ground-based IR alarm system in clear sky[J].Infrared and Laser Engineering, 2013, 7:1654-1659.(in Chinese) http://d.wanfangdata.com.cn/Periodical/hwyjggc201307001
    [6] 乔健.舰载光电成像系统探测能力分析[J].光学精密工程, 2013, 21(10):2520-2526. doi: 10.3788/OPE.

    QIAO J.Analysis on detection ability of shipborne optic-electronic equipment[J].Opt.Precision Eng., 2013, 21(10):2520-2526.(in Chinese) doi: 10.3788/OPE.
    [7] 雷中原, 张琳, 李为民.机载红外预警系统反导预警能力建模与仿真分析[J].红外与激光工程, 2009, 6:1047-1053. http://d.wanfangdata.com.cn/Periodical/hwyjggc200906022

    LEI ZH Y, ZHANG L, LI W M.Modeling and simulation analysis for the antimissile-warning ability of the airborne IR early warning system[J].Infrared and Laser Engineering, 2009, 6:1047-1053.(in Chinese) http://d.wanfangdata.com.cn/Periodical/hwyjggc200906022
    [8] 周金伟, 李吉成, 石志广, 等.高超声速飞行器红外可探测性能研究[J].光学学报, 2015, 5:62-69. http://www.cnki.com.cn/Article/CJFDTotal-GXXB201505007.htm

    ZHOU J W, LI J CH, SHI ZH G, et al..Research of infrared detectability of hypersonic vehicle[J].Acta Optica Sinica, 2015, 5:62-69.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXXB201505007.htm
    [9] 刘明奇, 王思远, 何玉青, 等.采用多种红外视距模型的子弹辐射探测系统作用距离分析[J].中国光学, 2015(4):636-643. doi: 10.3788/co.

    LIU M Q, WANG S Y, HE Y Q, et al..Bullet radiation detection range analysis based on multiple infrared visual range prediction models[J].Chinese Optics, 2015, 8(4): 636-643.(in Chinese) doi: 10.3788/co.
    [10] 张海林, 周林, 左文博, 等.临近空间高超声速导弹红外特性研究[J].激光与红外, 2015, 1:41-44. http://www.cqvip.com/QK/92524X/201501/663448566.html

    ZHANG H L, ZHOU L, ZUO W B.Study on infrared radiation feature of near space hypersonic missile[J].Laser & Infrared, 2015, 1:41-44.(in Chinese) http://www.cqvip.com/QK/92524X/201501/663448566.html
    [11] 张建奇, 方小平.红外物理[M].西安:西安电子科技大学出版社, 2012.

    ZHANG J Q, FANG X P.Infrared Physics[M].Xi'an:Xidian University Press, 2012.(in Chinese)
    [12] 刘旭, 李为民, 别晓峰.浮空红外探测系统预警高动态目标性能分析[J].红外技术, 2013, 12:788-792. http://d.wanfangdata.com.cn/Periodical/hwjs201312008

    LIU X, LI W M, BIE X F.Warning capability analysis of floating infrared detection system to high-speed vehicle[J].Infrared Technology, 2013, 12:788-792.(in Chinese) http://d.wanfangdata.com.cn/Periodical/hwjs201312008
    [13] 毛峡, 常乐, 刁伟鹤.复杂背景下红外点目标探测概率估算[J].北京航空航天大学学报, 2011, 11:1429-1434. http://d.wanfangdata.com.cn/Periodical/bjhkhtdxxb201111019

    MAO X, CHANG L, DIAO W H.Estimation for detection probability of infrared point target under complex backgrounds[J].J.Beijing University of Aeronautics and Astronautics, 2011, 11:1429-1434.(in Chinese) http://d.wanfangdata.com.cn/Periodical/bjhkhtdxxb201111019
    [14] LESLIEL DM JOHN, DAN E.Hypersonic test capabilities overview-U.S.Air Force T & E Days 2009(AIAA)[J].Aiaa Journal, 2009. doi: 10.2514/6.2009-1702
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1689
  • HTML全文浏览量:  347
  • PDF下载量:  817
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-05-17
  • 刊出日期:  2016-10-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!