Optical design of build-up aspherical solar concentrating mirror
-
摘要: 提出了一种组合非球面反射型太阳能聚光镜并给出了设计方法。聚光镜由38片非球面组成,每一片非球面都由一组特定系数C,a2,a4,a6,a8,a10的偶次非球面方程决定,是此特定非球面的一部分。根据非球面方程和光反射定律矢量形式,导出了非球面内壁上太阳反射光束的方向矢量与非球面系数C,a2,a4,a6,a8,a10的关系,适当地选择这些非球面系数,即适当地调整非球面面型,可以使太阳反射光束具有特定的方向矢量,使入射到非球面内壁上的太阳光束反射后全部聚焦在某一特定的区域内,形成小的光斑。每组特定系数都用粒子群优化算法求得,并经计算机模拟和实验证明其聚焦效果。聚光镜的光束压缩比为330:1,其聚焦光斑可作为一种高温热源,而此聚光镜可以用在太阳能加热装置中。Abstract: In this paper, a build-up aspherical solar concentrating mirror and its design method are presented. It is composed of 38 pieces of revolution surfaces, and each piece of revolution surface is the part of the aspheric surface defined by a set of specific coefficients C,a2,a4,a6,a8,a10. According to the even aspherical equation and the law of reflection in vector form, the relationship between the direction vectors of rays of light reflected from the inner wall of aspheric surface and the coefficients of an aspherical equation, C,a2,a4,a6,a8,a10, has been derived. By appropriately choosing these aspherical coefficients, namely, appropriately adjusting an aspherical surface type, the reflected light beam can have specific direction vectors, which can make the sunbeams incident on an aspherical inner wall focus on a particular area and form a small spot. Each group of specific coefficients is obtained by using particle swarm optimization algorithm. The focusing effect of the solar concentrating mirror with the specific coefficients is demonstrated by using computer simulations and proved experimentally. The theoretical compression ratio for this concentrating mirror is 330:1. The focused spot can be used as a high temperature heat source and the concentrating mirror can be used in a solar heating device.
-
[1] BARLEV D, VIDU R, STROEVE P. Innovation in concentrated solar power[J]. Solar Energy Materials & Solar Cells, 2011, 95(10):2703-2725.
[2] OLABI A G. The 3rd international conference on sustainable energy and environmental protection SEEP 2009-guest editor's introduction[J]. Energy, 2010, 35(12):4508-4509.
[3] 胡志强, 秦颖, 姜妍彦, 等.CoAl2O4粉体制备及在染料敏化太阳电池中的应用[J]. 光学 精密工程, 2013, 21(8):2017-2022. HU ZH Q, QIN Y, JIANG Y Y, et al. Preparation of spinel CoAl2O4 nanopowerders and their application to DSSC[J]. Opt. Precision Eng., 2013, 21(8):2017-2022.(in Chinese)
[4] 韩雪冰, 魏秀东, 卢振武, 等. 太阳能热发电聚光系统的研究进展[J]. 中国光学, 2011, 4(3):233-239. HAN X B, WEI X D, LU ZH W, et al. Review of concentration system in solar thermal power plant[J]. Chinese Optics, 2011, 4(3):233-239.(in Chinese)
[5] 闫勇, 金光. 空间太阳能电站发展及研究[J]. 中国光学, 2013, 6(2):129-135. YAN Y, JIN G. Development and research of solar power systems[J]. Chinese Optics, 2013, 6(2):129-135.(in Chinese)
[6] ZONDAG H A, DE VRIES D W, VAN HELDEN W G J, et al. The yield of different combined PV-thermal collector designs[J]. Solar Energy, 2003, 74(3):253-269.
[7] FERN NDEZ-GARC A A, ZARZA E, VALENZUELA L, et al. Parabolic-trough solar collectors and their applications[J]. Renew Sustain Energ Rev., 2010, 14(7):1695-1721.
[8] SALA G, PACH N D, ANT N I. Book 1:Classification of PV Concentrators", Test, Rating, and Specification of PV Concentrator Components and Systems, C Rating Project[EB/OL].[2010-03-05].. http://www.ies-def.upm.es/ies/CRATING/crating.htm.
[9] 潘其坤, 张来明, 谢冀江, 等. 基于卡塞格林结构的高倍太阳能聚光镜[J]. 中国光学, 2012, 5(4):388-393. PAN Q K, ZHANG L M, XIE J J, et al. High power solar condenser based on Cassegrain structure[J]. Chinese Optics, 2012, 5(4):388-393.(in Chinese)
[10] HORNE S, CONLEY G, GORDON J D. A Solid 500 Sun Compound Concentrator PV Design[C]. In Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, 2006:694-697.
[11] FACO J, OLIVEIRA A C. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator[J]. Renewable Energy, 2011, 36(1):90-96.
[12] 1SELLAMI N, MALLICK T K. Optical efficiency study of PV crossed compound parabolic concentrator[J]. Applied Energy, 2013, 102:868-876.
[13] 秦华, 类成新, 刘汉法, 等. 高次柱面反射型太阳能聚光镜的光学设计[J]. 物理学报, 2013, 62(10):104215. QIN H, LEI CH X, LIU H F, et al. Optical design of a reflective concentrator mirror utilizing higher order cylindrical surfaces[J]. Acta Phys. Sin., 2013, 62(10):104215.(in Chinese)
[14] BOMM J, B CHTEMANN A, CHATTEN A J, et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators[J]. Solar Energy Materials and Solar Cells, 2011, 95(8):2087 2094.
[15] 郑宏飞, 何开岩, 陶涛, 等. 反射式顺向聚焦整体跟踪式高温太阳能集热装置[J]. 太阳能学报, 2009, 30(8):1033-1036. ZHENG H F, HE K Y, TAO T, et al. The Reflection style same direction focusing high temperature solar collector with holistic tracking function[J]. Acta Energiae Solaris Sinica, 2009, 30(8):1033-1036.(in Chinese)
[16] 袁旭沧.光学设计[M].北京:北京理工大学出版社, 1998. YUAN X C. Optical Design[M]. Beijing:Beijing Institute of Technology Press, 1998.(in Chinese)
[17] QIN H, LEI CH X, LIU H F, et al. Optical design of an aspherical cylinder-type reflecting solar concentrator[J]. Energy, 2013, 57:751-758.
[18] QIN H. Aberration correction of a single aspheric lens with particle swarm algorithm[J]. Optics Communications, 2012, 285(13-14):2996-3000.
计量
- 文章访问数: 1236
- HTML全文浏览量: 483
- PDF下载量: 543
- 被引次数: 0