留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间大口径望远镜稳像系统发展现状及趋势

曹小涛 孙天宇 赵运隆 王栋 郭权锋

曹小涛, 孙天宇, 赵运隆, 王栋, 郭权锋. 空间大口径望远镜稳像系统发展现状及趋势[J]. 中国光学, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
引用本文: 曹小涛, 孙天宇, 赵运隆, 王栋, 郭权锋. 空间大口径望远镜稳像系统发展现状及趋势[J]. 中国光学, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
CAO Xiao-tao, SUN Tian-yu, ZHAO Yun-long, WANG Dong, GUO Quan-feng. Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
Citation: CAO Xiao-tao, SUN Tian-yu, ZHAO Yun-long, WANG Dong, GUO Quan-feng. Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739

空间大口径望远镜稳像系统发展现状及趋势

doi: 10.3788/CO.20140705.0739
基金项目: 

国家自然科学基金青年基金资助项目(No.41105014)

详细信息
    作者简介:

    曹小涛(1980- ),男,河南巩义人,博士,副研究员,2008年于吉林大学获得博士学位,主要从事空间相机电子学及控制系统技术方面的研究。

    通讯作者: 曹小涛,E-mail:caoxiaotao@ciomp.ac.cn
  • 中图分类号: TH751

Current status and development tendency of image stabilization system of large aperture space telescope

  • 摘要: 介绍了目前国际上已发射及正在论证的大型空间望远镜的稳像控制系统,主要包括自由飞行模式的HUBBLE、JWST、ATLAST-8m和ATLAST-9.2m,载体搭载模式的SOFIA和OPTⅡX。详细论述了这些空间望远镜稳像系统的组成、工作原理、主要元件、性能指标和控制算法,并对基于磁悬浮技术的无扰动载荷设计概念和机械臂直接驱动空间相机的设计思想进行了介绍。分析表明,基于机械臂和磁悬浮技术的精密稳像及主动振动抑制系统是未来的发展趋势。
  • [1]

    [1] MATTHEW D L. Experience with the Hubble Space Telescope:20 years of an archetype[J]. Optical Engineering, 2012, 51(1):011011-1-011011-18.
    [2] ODELL C R. Creation of the Hubble Space Telescope[J]. Exp Astron, 2009, 25:261-272.
    [3] PIERRE Y B. The Design and Construction of Large Optical Telescopes[M]. New York:Springer, 2003.
    [4] 王帅, 李洪文, 孟浩然, 等. 光电望远镜伺服系统速度环的自抗扰控制[J]. 光学 精密工程, 2011, 19(10):2442-2449. WANG S, LI H W, MENG H R, et al. Research on the control strategy for the flexible-joint robot arm Active disturbance rejection controller for speed-loop in telescope servo system[J]. Opt. Precision Eng., 2011, 19(10):2442-2449.(in Chinese)
    [5] 张斌, 李洪文, 郭立红, 等. 变结构PID在大型望远镜速度控制中的应用[J]. 光学 精密工程, 2010, 18(7):1613-1619. ZHANG B, LI H W, GUO L H, et al. Research on the control strategy for the flexible-joint robot arm Active disturbance rejection controller for speed-loop in telescope servo system application of variable structure PID in velocity control for large telescope[J]. Opt. Precision Eng., 2010, 18(7):1613-1619.(in Chinese)
    [6] 李洪文. 基于内模PID控制的大型望远镜伺服系统[J]. 光学 精密工程, 2009, 17(2):327-332. LI H W. Research on the control strategy for the flexible-joint robot arm Active disturbance rejection controller for speed-loop in telescope servo system Application of variable structure PID in velocity control for large telescope Servo system of large telescope based on internal model PID control method[J]. Opt. Precision Eng., 2009, 17(2):327-332.(in Chinese)
    [7] BEALS G A, CRUM R C, DOUGHERTY H J, et al. Hubble space telescope precision pointing control system[J]. AIAA J. Guidance, Control, and Dynamics, 1988, 11(2):119-123.
    [8] DAVID J E, LINDA A R. Acquisition, pointing and tracking performance of the hubble space telescope fine guidance sensors[J]. SPIE, 1992, 1697:236-250.
    [9] GARY M, MIKE F, KONG H. Fine pointing control for a next generation space telescope[J]. SPIE, 1998, 3356:1070-1077.
    [10] ROWLANDS N, ALDRIDGE D, et al. The JWST fine guidance sensor[J]. SPIE, 2004, 5487:664-675.
    [11] NEIL R, GERRY W. Detector characterization for the JWST fine guidance sensor[J]. SPIE, 2010, 7742:77421T-1-77421T-12.
    [12] MIROSLAW O, WILLIAM V. Fine steering mirror for the James Webb Space Telescope[J]. SPIE, 2007, 6665:66650D-1-66650D-10.
    [13] YEVGENY S, HOURIA S, VIVTOR F. Precise nonius guidance and image stabilization of a large space telescope[C]. 2011 5th International Conference on Recent Advances in Space Technologies, Istanbul: RAST, 2011:869-874.
    [14] TUPPER H T, KONG Q H, et al. Integrated modeling activities for the James Webb Space Telescope: optical jitter analysis[J]. SPIE, 2004, 5487:588-599.
    [15] PREUMONT A. Vibration Control of Active Structures:An Introduction[M]. Berlin:Springer, 2011.
    [16] NELSON P. Space architecture for disturbance-free payload[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Monterey, California: AIAA, 2002:1-12.
    [17] MICHAEL A G, NELSON P. Unprecedented vibration isolation demonstration using the disturbance-free payload concept[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Providence, Rhode Island: AIAA, 2004:1-12.
    [18] NELSON P, THOMAS L T. Control system for terrestrial planet finder interferometer[J]. SPIE, 2003, 4852:581-592.
    [19] CHEN C C, HAMID H. Simplified Lasercom system architecture using a disturbance-free platform[J]. SPIE, 2006, 6105:610505-1-610505-6.
    [20] MARC P, TOM B. Advanced technology large-aperture space telescope:science drivers and technology developments[J]. Optical Engineering, 2012, 51(1):011007-1 011007-11.
    [21] KARL W. The telescope control system of SOFIA[J]. SPIE, 2003, 4857:364-371.
    [22] ULRICH L, TERRY H. Preparation of the pointing and control system of the SOFIA airborne telescope for early science missions[J]. SPIE, 2010, 7733:77330S-1-77330S-13.
    [23] CHRISTIAN S. Canadian space robotic activities[J]. Acta Astronautica, 1997, 41(4):239-246.
    [24] PUTZ P. Space robotics in Europe: a survey[J]. Robotics and Autonomous Systems, 1998, 23:3-16.
    [25] MARC P, WILLIAM B S. Using the ISS as a testbed to prepare for the next generation of space-based telescope[J]. SPIE, 2012, 8442:84421T-1-84421T-10.
    [26] DIFTLER M A, MEHLING J S. Robonaut 2 the first humanoid robot in space[C]. 2011 IEEE International Conference on Robotics and Automation, Shanghai:IEEE, 2011:2178-2193.
    [27] 刘业超. 柔性关节机械臂控制策略的研究[D].哈尔滨:哈尔滨工业大学, 2009. LIU Y CH. Research on the control strategy for the flexible-joint robot arm[D]. Harbin:Harbin Institute of Technology, 2009.
    [28] GLENN J, ELIZABETH B. SRMS history, evolution and lessons learned[C]. AIAA SPACE 2011 Conference & Exposition, Long Beach, California:AIAA, 2011:1-24.
    [29] 徐文福, 梁斌, 李成, 等. 空间机器人微重力模拟实验系统研究综述[J]. 机器人, 2009, 31(1):88-96. XU W F, LIANG B, LI CH, et al. A review on simulated micro-gravity experiment systems of space robot[J]. Robot., 2009, 31(1):88-96.(in Chinese)
    [30] CLAUDE R K, BRIAN J H. A system for load isolation and precision pointing[J]. SPIE, 1983, 0444:132-137.

  • [1] 张雨辰, 王飞翔, 许方宇, 黄善杰, 谭旭, 路文龙, 肖建国, 贾钰超, 罗宏.  太阳望远镜的倒锥导流式热光阑研制 . 中国光学, 2020, 13(3): 586-594. doi: 10.3788/CO.2019-0139
    [2] 王智, 沙巍, 陈哲, 王永宪, 康玉思, 罗子人, 黎明, 李钰鹏.  空间引力波探测望远镜初步设计与分析 . 中国光学, 2018, 11(1): 131-151. doi: 10.3788/CO.20181101.0131
    [3] 李正炜, 王建立, 吴元昊, 王国聪, 刘帅.  基于单站地基望远镜的空间目标姿态估计方法 . 中国光学, 2016, 9(3): 371-378. doi: 10.3788/CO.20160903.0371
    [4] 邓永停, 李洪文, 王建立, 刘京.  基于自适应滑模控制的大型望远镜低速控制 . 中国光学, 2016, 9(6): 713-720. doi: 10.3788/CO.20160906.0713
    [5] 李振伟, 杨文波, 张楠.  水平式光电望远镜静态指向误差的修正 . 中国光学, 2015, 8(2): 263-269. doi: 10.3788/CO.20150802.0263
    [6] 邓永停, 李洪文, 王建立.  大型望远镜交流伺服控制系统综述 . 中国光学, 2015, 8(6): 895-908. doi: 10.3788/CO.20150806.0895
    [7] 王智, 郭万存.  空间臂式补偿机构轴承预紧力与系统刚度关系分析 . 中国光学, 2014, 7(6): 989-995. doi: 10.3788/CO.20140706.0989
    [8] 石磊, 许永森, 刘福贺.  光电系统中铍反射镜的发展与应用 . 中国光学, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749
    [9] 李宗轩, 金光, 张雷, 孔林.  3.5 m口径空间望远镜单块式主镜技术展望 . 中国光学, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
    [10] 吉淑娇, 朱明, 胡汉平.  基于特征点匹配的电子稳像技术 . 中国光学, 2013, 6(6): 841-849. doi: 10.3788/CO.20130606.841
    [11] 王富国, 杨飞, 赵宏超, 苏燕芹, 陈宝刚.  TMT望远镜三镜系统的研究进展 . 中国光学, 2013, 6(5): 643-651. doi: 10.3788/CO.20130605.0643
    [12] 吴威, 许廷发, 王亚伟, 闫辉, 徐磊.  高精度全景补偿电子稳像 . 中国光学, 2013, 6(3): 378-385. doi: 10.3788/CO.20130603.0378
    [13] 张景旭.  地基大口径望远镜系统结构技术综述 . 中国光学, 2012, 5(4): 327-336. doi: 10.3788/CO.20120504.0327
    [14] 张景旭.  地基望远镜塔台圆顶结构形式及设计原则 . 中国光学, 2012, 5(2): 126-132. doi: 10.3788/CO.20120502.0126
    [15] 武治国, 韩广良, 王明佳.  运动背景下的帧间稳像技术 . 中国光学, 2011, 4(5): 519-524.
    [16] 董磊, 王斌, 刘欣悦.  多光束傅里叶望远镜的关键技术 . 中国光学, 2010, 3(5): 440-445.
    [17] 韩昌元.  近代高分辨地球成像商业卫星 . 中国光学, 2010, 3(3): 201-208.
    [18] 陈宝刚, 张景旭, 杨飞, 董磊, 王富国.  傅立叶望远镜外场试验聚光镜子镜支撑模块的设计 . 中国光学, 2009, 2(4): 329-333.
    [19] 李创, 王炜, 樊学武.  基于带状弹簧的空间望远镜精密展开技术进展 . 中国光学, 2009, 2(2): 85-90.
    [20] 任百川, 钟 兴, 金 光.  采用负折射率材料提高空间望远镜分辨率的理论研究 . 中国光学, 2009, 2(3): 184-189.
  • 加载中
计量
  • 文章访问数:  394
  • HTML全文浏览量:  31
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-12
  • 修回日期:  2014-07-16
  • 刊出日期:  2014-09-25

空间大口径望远镜稳像系统发展现状及趋势

doi: 10.3788/CO.20140705.0739
    基金项目:

    国家自然科学基金青年基金资助项目(No.41105014)

    作者简介:

    曹小涛(1980- ),男,河南巩义人,博士,副研究员,2008年于吉林大学获得博士学位,主要从事空间相机电子学及控制系统技术方面的研究。

    通讯作者: 曹小涛,E-mail:caoxiaotao@ciomp.ac.cn
  • 中图分类号: TH751

摘要: 介绍了目前国际上已发射及正在论证的大型空间望远镜的稳像控制系统,主要包括自由飞行模式的HUBBLE、JWST、ATLAST-8m和ATLAST-9.2m,载体搭载模式的SOFIA和OPTⅡX。详细论述了这些空间望远镜稳像系统的组成、工作原理、主要元件、性能指标和控制算法,并对基于磁悬浮技术的无扰动载荷设计概念和机械臂直接驱动空间相机的设计思想进行了介绍。分析表明,基于机械臂和磁悬浮技术的精密稳像及主动振动抑制系统是未来的发展趋势。

English Abstract

曹小涛, 孙天宇, 赵运隆, 王栋, 郭权锋. 空间大口径望远镜稳像系统发展现状及趋势[J]. 中国光学, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
引用本文: 曹小涛, 孙天宇, 赵运隆, 王栋, 郭权锋. 空间大口径望远镜稳像系统发展现状及趋势[J]. 中国光学, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
CAO Xiao-tao, SUN Tian-yu, ZHAO Yun-long, WANG Dong, GUO Quan-feng. Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
Citation: CAO Xiao-tao, SUN Tian-yu, ZHAO Yun-long, WANG Dong, GUO Quan-feng. Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
参考文献 (1)

目录

    /

    返回文章
    返回