留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率表面等离子体显微镜综述

蔡浩原

蔡浩原. 高分辨率表面等离子体显微镜综述[J]. 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
引用本文: 蔡浩原. 高分辨率表面等离子体显微镜综述[J]. 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
CAI Hao-yuan. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
Citation: CAI Hao-yuan. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691

高分辨率表面等离子体显微镜综述

doi: 10.3788/CO.20140705.0691
基金项目: 

国家自然科学基金资助项目(No.61372052)

详细信息
    作者简介:

    蔡浩原(1977- )男,广西桂平人,博士,副研究员,1998年于清华大学获得学士学位,2003年于中国科学院电子学研究所获得博士学位,主要从事微纳传感器及分析仪器方面的研究。

  • 中图分类号: TP394.1;TH691.9

Review of high resolution surface plasmon microscopy

  • 摘要: 本文对表面等离子体显微镜的原理、架构和应用进行了综述,指出表面等离子体显微镜技术的未来发展方向是着力提高横向分辨率,接近光学衍射极限,以及发展与电化学、力学等微纳操纵手段结合的表面等离子体显微镜,形成微纳尺度下显微成像和操纵的闭环测量路径。
  • [1]

    [1] RAETHER H. Surface plasmons on smooth surfaces[M]. Berlin:Springer Press, 1988.
    [2] HOMOLA J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 2008, 108(2):462-493.
    [3] LIEDBERG B, NYLANDER C, LUNSTR M I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4:299-304.
    [4] YEATMAN E M. Resolution and sensitivity in surface plasmon microscopy and sensing[J]. Biosensors and Bioelectronics, 1996, 11(6):635-649.
    [5] ROTHENH USLER B, KNOLL W. Surface plasmon microscopy[J]. Nature, 1988, 332(6165):61.
    [6] GIEBEL K, BECHINGER C, HERMINGHAUS S, et al. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy[J]. Biophys J., 1999, 76(1 Pt 1):509-516.
    [7] WATANABE K, MIYAZAKI R, TERAKADO G, et al. High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy[J]. Appl. Opt., 2010, 49(5):887-891.
    [8] SHAN X, PATEL U, WANG S, et al. Imaging local electrochemical current via surface plasmon resonance[J]. Science, 2010, 327(5971):1363-1366.
    [9] JAMIL M M, DENYER M C, YOUSEFFI M, et al. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy[J]. J. Struct. Biol., 2008, 164(1):75-80.
    [10] WANG W, WANG S, LIU Q, et al. Mapping single-cell-substrate interactions by surface plasmon resonance microscopy[J]. Langmuir, 2012, 28(37):13373-13379.
    [11] WANG W, YANG Y, WANG S, et al. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells[J]. Nature Chem., 2012, 4(10):846-853.
    [12] SHAN X, D EZ-P REZ I, WANG L, et al. Imaging the electrocatalytic activity of single nanoparticles[J]. Nature Nanotechnology, 2012, 7(10):668-672.
    [13] HALPERN A R, WOOD J B, WANG Y, et al. Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption[J]. ACS Nano, 2014, 8(1):1022-1030.
    [14] ROLAND T, BERGUIGA L, ELEZGARAY J, et al. Scanning surface plasmon imaging of nanoparticles[J]. Physical Review B, 2010, 81(23):235419.
    [15] WANG W, FOLEY K, SHAN X, et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy[J]. Nature Chemistry, 2011, 3(3):249-255.
    [16] KRETSCHMANN E. The determination of the optical constants of metals by excitation of surface plasmons[J]. z. Phys., 1971, 241(4):313-324.
    [17] HOMOLA J, YEE SS, GAUGLITZ G. Surface plasmon resonance sensors:review[J]. Sensors and Actuators B:Chemical, 1999, 54(1):3-15.
    [18] LIU C, CUI D, LI H. A hard soft microfluidic-based biosensor flow cell for SPR imaging application[J]. Biosensors and Bioelectronics, 2010, 26(1):255-261.
    [19] KANO H, KNOLL W. Locally excited surface-plasmon-polaritons for thickness measurement of LBK films[J]. Optics Communications, 1998, 153(4):235-239.
    [20] HUANG B, YU F, ZARE R N. Surface plasmon resonance imaging using a high numerical aperture microscope objective[J]. Analytical Chemistry, 2007, 79(7):2979-2983.
    [21] STABLER G, SOMEKH M G, SEE C W. High-resolution wide-field surface plasmon microscopy[J]. J. Microsc., 2004, 214(Pt 3):328-333.
    [22] ZHANG J, PITTER MC, LIU S, et al. Surface-plasmon microscopy with a two-piece solid immersion lens: bright and dark fields[J]. Appl. Opt., 2006, 45(31):7977-7986.
    [23] KANO H, KNOLL W. A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe[J]. Optics Communications, 2000, 182(1):11-15.
    [24] SOMEKH M G, LIU S G, VELINOV T S, et al. Optical V(z) for high-resolution 2pi surface plasmon microscopy[J]. Opt. Lett., 2000, 25(11):823-825.
    [25] SOMEKH M G, LIU S, VELINOV T S, et al. High-resolution scanning surface-plasmon microscopy[J]. Appl. Opt., 2000, 39(34):6279-6287.
    [26] ZHANG B, PECHPRASARN S, ZHANG J, et al. Confocal surface plasmon microscopy with pupil function engineering[J]. Opt. Express, 2012, 20(7):7388-7397.
    [27] SOMEKH M G, STABLER G, LIU S, et al. Wide-field high-resolution surface-plasmon interference microscopy[J]. Opt. Lett., 2009, 34(20):3110-3112.
    [28] WATANABE K, MATSUURA K, KAWATA F, et al. Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites[J]. Biomed Opt. Express, 2012, 3(2):354-359.
    [29] TOMA M, KNOLL W, DOSTALEK J. Bragg-scattered surface plasmon microscopy: theoretical study[J]. Plasmonics, 2011:1-7.
    [30] BARNES W L, PREIST T W, KITSON S C, et al. Photonic gaps in the dispersion of surface plasmons on gratings[J]. Phys. Rev. B Condens Matter, 1995, 51(16):11164-11167.
    [31] DOSTALEK J, ADAM P, KVASNI K A P, et al. Spectroscopy of Bragg-scattered surface plasmons for characterization of thin biomolecular films[J]. Opt. Lett., 2007, 32(20):2903-2905.
    [32] LINDQUIST N C, LESUFFLEUR A, IM H, et al. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation[J]. Lab. Chip., 2009, 9(3):382-387.
    [33] BOUDREAU N, JONES P. Extracellular matrix and integrin signalling: the shape of things to come[J]. Biochem. J., 1999, 339:481-488.
    [34] BARCZYK M, CARRACEDO S, GULLBERG D. Integrins[J]. Cell and Tissue Research, 2010, 339(1):269-280.

  • [1] 宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦.  激光等离子体13.5 nm极紫外光刻光源进展 . 中国光学, 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
    [2] 朱业传, 苑伟政, 虞益挺.  表面等离子体平面金属透镜及其应用 . 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
    [3] 王五松, 张利伟, 张冶文.  表面等离子波导及应用 . 中国光学, 2015, 8(3): 329-339. doi: 10.3788/CO.20150803.0329
    [4] 苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚.  层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池 . 中国光学, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
    [5] 张帆, 李秋顺, 姚卫国, 郑晖, 马耀宏, 董文飞.  覆膜长周期光纤光栅在生化分析中的应用及研究进展 . 中国光学, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
    [6] 管小伟, 吴昊, 戴道锌.  硅基混合表面等离子体纳米光波导及集成器件 . 中国光学, 2014, 7(2): 181-195.
    [7] 崔乃迪, 寇婕婷, 梁静秋, 王惟彪, 郭进, 冯俊波, 滕婕, 曹国威.  三环型波导微环谐振器无热化生物传感器 . 中国光学, 2014, 7(3): 428-434. doi: 10.3788/CO.20140703.0428
    [8] 窦银萍, 孙长凯, 林景全.  激光等离子体极紫外光刻光源 . 中国光学, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
    [9] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [10] 李明宇, 薛懿, 罗根, 张超.  平面光波导生物传感器微流通道的不可逆封合 . 中国光学, 2013, 6(1): 103-110. doi: 10.3788/CO.20130601.0103
    [11] 张琨, 岳远斌, 李彤, 孙小强, 张大明.  感应耦合等离子体刻蚀在聚合物光波导制作中的应用 . 中国光学, 2012, 5(1): 64-70. doi: 10.3788/CO.20120501.0064
    [12] 任玉, 李付锦, 董旭, 林景全.  飞秒激光等离子体通道传导能量特性的研究进展 . 中国光学, 2012, 5(2): 133-142. doi: 10.3788/CO.20120502.0133
    [13] 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙.  表面等离子体激元纳米激光器技术及应用研究进展 . 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
    [14] BELEVTSEV A A, FIRSOV K N, KAZANTSEV S Yu, KONONOV I G, 张来明.  非链式化学HF(DF)激光器工作气体中电子分离的非稳定性和气体放电等离子体的自组织现象 . 中国光学, 2011, 4(1): 31-40.
    [15] 叶继飞, 洪延姬, 王广宇, 李南雷.  激光等离子体微推进技术的研究进展 . 中国光学, 2011, 4(4): 319-326.
    [16] 刘镜, 刘娟, 王涌天, 谢敬辉.  亚波长金属光栅的表面等离子体激元共振特性 . 中国光学, 2011, 4(4): 363-368.
    [17] MA Jun-xian, FANG Yu, CHEN Bi-bo, TAN Rui-hu, LUO Xian-gang.  T型缝隙结构表面等离子波导的基本特性研究 . 中国光学, 2010, 3(1): 89-92.
    [18] 雷建国, 刘天航, 林景全, 高勋, 厉宝增.  表面等离子体激元的若干新应用 . 中国光学, 2010, 3(5): 432-439.
    [19] LIU Juan, WANG Yong-tian, XU Li-wei, XIE Jing-hui.  表面等离子体波在金属纳米缝超强透射中的作用 . 中国光学, 2010, 3(1): 33-37.
    [20] YANG T, HO H P.  基于银膜孔阵列超强透射效应的相敏表面等离子体共振传感器的仿真研究 . 中国光学, 2010, 3(1): 57-63.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  53
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-11
  • 修回日期:  2014-07-13
  • 刊出日期:  2014-09-25

高分辨率表面等离子体显微镜综述

doi: 10.3788/CO.20140705.0691
    基金项目:

    国家自然科学基金资助项目(No.61372052)

    作者简介:

    蔡浩原(1977- )男,广西桂平人,博士,副研究员,1998年于清华大学获得学士学位,2003年于中国科学院电子学研究所获得博士学位,主要从事微纳传感器及分析仪器方面的研究。

  • 中图分类号: TP394.1;TH691.9

摘要: 本文对表面等离子体显微镜的原理、架构和应用进行了综述,指出表面等离子体显微镜技术的未来发展方向是着力提高横向分辨率,接近光学衍射极限,以及发展与电化学、力学等微纳操纵手段结合的表面等离子体显微镜,形成微纳尺度下显微成像和操纵的闭环测量路径。

English Abstract

蔡浩原. 高分辨率表面等离子体显微镜综述[J]. 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
引用本文: 蔡浩原. 高分辨率表面等离子体显微镜综述[J]. 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
CAI Hao-yuan. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
Citation: CAI Hao-yuan. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
参考文献 (1)

目录

    /

    返回文章
    返回