留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调太赫兹与光学超材料

张检发 袁晓东 秦石乔

张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
引用本文: 张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
Citation: ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349

可调太赫兹与光学超材料

doi: 10.3788/CO.20140703.0349
基金项目: 

国家自然科学基金资助项目(No.11304389)

详细信息
    作者简介:

    张检发(1985- ),男,江西萍乡人,博士,讲师,2013年于英国南安普顿大学获得博士学位,主要从事光学超材料、表面等离激元和石墨烯方面的研究。E-mail:jfzhang85@nudt.edu.cn

    通讯作者: 张检发
  • 中图分类号: O439;TN214

Tunable terahertz and optical metamaterials

  • 摘要: 本文对可调太赫兹与光学超材料的研究进展进行了综述,并对其发展趋势和应用前景进行了展望。可以预见,可调超材料将继续成为超材料研究中的热点课题,并将成为引领光学器件和光学系统变革的潜在技术途径,对光学和太赫兹技术的发展将产生深远的影响。
  • [1]

    [1] ZHELUDEV N I. The road ahead for metamaterials[J]. Science,2010,328(5978):582-583. [2] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79. [3] YEN T J,PADILLA W,FANG N,et al.. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496. [4] LINDEN S,ENKRICH C,WEGENER M,et al.. Magnetic response of metamaterials at 100 terahertz[J]. Science,2004,306(5700):1351-1353. [5] ZHANG S,FAN W,PANOIU N,et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Rev. Lett.,2005,95(13):137404. [6] XIAO S,CHETTIAR U K,KILDISHEV A V,et al.. Yellow-light negative-index metamaterials[J]. Optics Letters,2009,34(22):3478-3480. [7] BURGOS S P,DE WAELE R,POLMAN A,et al.. A single-layer wide-angle negative-index metamaterial at visible frequencies[J]. Nature Materials,2010,9(5):407-412. [8] XU T,AGRAWAL A,ABASHIN M,et al.. All-angle negative refraction and active flat lensing of ultraviolet light[J]. Nature,2013,497(7450):470-474. [9] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Physics-Uspekhi,1968,10(4):509-514. [10] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Rev. Lett.,2000,85(18):3966. [11] YU N,GENEVET P,KATS M A,et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337. [12] NI X,EMANI N K,KILDISHEV A V,et al.. Broadband light bending with plasmonic nanoantennas[J]. Science,2012,335(6067):427-427. [13] KILDISHEV A V,BOLTASSEVA A,SHALAEV V M. Planar photonics with metasurfaces[J]. Science,2013,339(6125):1232009. [14] ZHELUDEV N I,KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials,2012,11(11):917-924. [15] GANSEL J K,THIEL M,RILL M S,et al.. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science,2009,325(5947):1513-1515. [16] ZHAO Y,BELKIN M,AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications,2012,3:870. [17] LANDY N,SAJUYIGBE S,MOCK J,et al.. Perfect metamaterial absorber[J]. Phys. Rev. Lett.,2008,100(20):207402. [18] LIU N,MESCH M,WEISS T,et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters,2010,10(7):2342-2348. [19] MAIER T,BR CKL H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters,2009,34(19):3012-3014. [20] WATTS C M,LIU X,PADILLA W J. Metamaterial Electromagnetic Wave Absorbers(Adv. Mater.23/2012)[J]. Advanced Materials,2012,24(23):OP181-OP181. [21] AIETA F,GENEVET P,KATS M A,et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters,2012,12(9):4932-4936. [22] NI X,ISHII S,KILDISHEV A V,et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science Applications,2013,2(4):e72. [23] GIL I,BONACHE J,GARCIA-GARCIA J,et al.. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. Microwave Theory and Techniques,IEEE Transactions on,2006,54(6):2665-2674. [24] SHADRIVOV I V,MORRISON S K,KIVSHAR Y S. Tunable split-ring resonators for nonlinear negative-index metamaterials[J]. Optics Express,2006,14(20):9344-9349. [25] LIU A,ZHU W,TSAI D,et al.. Micromachined tunable metamaterials:a review[J]. J. Optics,2012,14(11):114009. [26] OU J-Y,PLUM E,JIANG L,et al.. Reconfigurable photonic metamaterials[J]. Nano Letters,2011,11(5):2142-2144. [27] ZHU W M,LIU A Q,ZHANG X M,et al.. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials,2011,23(15):1792-1796. [28] OU J-Y,PLUM E,ZHANG J,et al.. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J]. Nature Nanotechnology,2013,8(4):252-255. [29] GIL I,MARTIN F,ROTTENBERG X,et al.. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials[J]. Electronics Letters,2007,43(21):1153-1153. [30] CHEN H-T,PADILLA W J,ZIDE J M,et al.. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600. [31] GHOLIPOUR B,ZHANG J,MACDONALD K F,et al.. An All-Optical, Non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials,2013,25(22):3050-3054. [32] NIKOLAENKO A E,DE ANGELIS F,BODEN S,et al.. Carbon nanotubes in a photonic metamaterial[J]. Phys. Rev. Lett.,2010,104:153902. [33] ZHAO Q,KANG L,DU B,et al.. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Appl. Physics Letters,2007,90(1):011112-011112-011113. [34] BOARDMAN A D,GRIMALSKY V V,KIVSHAR Y S,et al.. Active and tunable metamaterials[J]. Laser Photonics Reviews,2011,5(2):287-307. [35] ZHAO Q,KANG L,DU B,et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Phys. Rev. Lett.,2008,101(2):027402. [36] ZHAO Q,ZHOU J,ZHANG F,et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12(12):60-69. [37] GINN J C,BRENER I,PETERS D W,et al.. Realizing optical magnetism from dielectric metamaterials[J]. Phys. Rev. Lett.,2012,108(9):097402. [38] ZHANG J,MACDONALD K F,ZHELUDEV N I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial[J]. Optics Express,2013,21(22):26721-26728. [39] SMITH D R,PADILLA W J,VIER D,et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184. [40] FEDOTOV V,ROSE M,PROSVIRNIN S,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99(14):147401. [41] VALENTINE J,ZHANG S,ZENTGRAF T,et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-379. [42] BAENA J D,BONACHE J,MART N F,et al.. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines[J]. Microwave Theory and Techniques,IEEE Transactions on,2005,53(4):1451-1461. [43] ZHOU J,KOSCHNY T,KAFESAKI M,et al.. Saturation of the magnetic response of split-ring resonators at optical frequencies[J]. Phys. Rev. Lett.,2005,95(22):223902. [44] REYNET O,ACHER O. Voltage controlled metamaterial[J]. Appl. Phys. Lett.,2004,84(7):1198-1200. [45] GIL I,GARCIA-GARCIA J,BONACHE J,et al.. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies[J]. Electronics Letters,2004,40(21):1347-1348. [46] SHADRIVOV I V,KOZYREV A B,van der WEIDE DW,et al.. Tunable transmission and harmonic generation in nonlinear metamaterials[J]. Appl. Phys. Lett.,2008,93(16):161903-161903-161903. [47] LAPINE M,POWELL D,GORKUNOV M,et al.. Structural tunability in metamaterials[J]. Appl. Phys. Lett.,2009,95(8):084105-084105-084103. [48] TAO H,STRIKWERDA A,FAN K,et al.. Reconfigurable terahertz metamaterials[J]. Phys. Rev. Lett.,2009,103(14):147401. [49] FU Y H,LIU A Q,ZHU W M,et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials,2011,21(18):3589-3594. [50] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters,2010,10(10):4222-4227. [51] LI J,SHAH C M,WITHAYACHUMNANKUL W,et al.. Mechanically tunable terahertz metamaterials[J]. Appl. Phys. Lett.,2013,102(12):121101-121101-121104. [52] LEE S,KIM S,KIM T T,et al.. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts[J]. Advanced Materials,2012,24(26):3491-3497. [53] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Characterization of the tunable response of highly strained compliant optical metamaterials[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,369(1950):3447-3455. [54] AKSU S,HUANG M,ARTAR A,et al.. Flexible plasmonics on unconventional and nonplanar substrates[J]. Advanced Materials,2011,23(38):4422-4430. [55] PADILLA W J,TAYLOR A J,HIGHSTRETE C,et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys. Rev. Lett.,2006,96(10):107401. [56] CHEN H-T,O'HARA J F,AZAD A K,et al.. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics,2008,2(5):295-298. [57] CHEN H-T,PADILLA W J,CICH M J,et al.. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics,2009,3(3):148-151. [58] JUN Y C,GONZALES E,RENO J L,et al.. Active tuning of mid-infrared metamaterials by electrical control of carrier densities[J]. Optics Express,2012,20(2):1903-1911. [59] MIAO X,PASSMORE B,GIN A,et al.. Doping tunable resonance: toward electrically tunable mid-infrared metamaterials[J]. Appl. Phys. Lett.,2010,96(10):101111-101111-101113. [60] JUN Y C,RENO J,RIBAUDO T,et al.. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures[J]. Nano Letters,2013,13(11):5391-5396. [61] ZHANG F,ZHAO Q,KANG L,et al.. Magnetic control of negative permeability metamaterials based on liquid crystals. Paper presented at:Microwave Conference,2008. EuMC 2008. 38th European2008. [62] BUCHNEV O,WALLAUER J,WALTHER M,et al.. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial[J]. Appl. Phys. Lett.,2013,103(14):141904. [63] SHREKENHAMER D,CHEN W-C,PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Phys. Rev. Lett.,2013,110(17):177403. [64] BUCHNEV O,OU J,KACZMAREK M,et al.. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Opt. Express,21,2013:1633-1638. [65] MINOVICH A,FARNELL J,NESHEV D N,et al.. Liquid crystal based nonlinear fishnet metamaterials[J]. Appl. Phys. Lett.,2012,100(12):121113-121113-121114. [66] DRISCOLL T,KIM H-T,CHAE B-G,et al.. Memory metamaterials[J]. Science,2009,325(5947):1518-1521. [67] DICKEN M J,AYDIN K,PRYCE I M,et al.. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Opt. Express,2009,17(20):18330-18339. [68] DRISCOLL T,PALIT S,QAZILBASH M M,et al.. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl. Phys. Lett.,2008,93(2):024101-024103. [69] SAMSON Z,MACDONALD K,De ANGELIS F,et al.. Metamaterial electro-optic switch of nanoscale thickness[J]. Appl. Phys. Lett.,2010,96(14):143105-143105-143103. [70] EGGLETON B J,LUTHER-DAVIES B,RICHARDSON K. Chalcogenide photonics[J]. Nature Photonics,2011,5(3):141-148. [71] WURTZ G A,POLLARD R,HENDREN W,et al.. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology,2011,6(2):107-111. [72] REN M,PLUM E,XU J,et al.. Giant nonlinear optical activity in a plasmonic metamaterial[J]. Nature Communications,2012,3:833. [73] ZHU Y,HU X,FU Y,et al.. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports,2013,3:2338. [74] SCHULLER J A,BARNARD E S,CAI W,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials,2010,9(3):193-204. [75] REN M,JIA B,OU J Y,et al. Nanostructured plasmonic medium for terahertz bandwidth all‐optical switching[J]. Advanced Materials,2011,23(46):5540-5544. [76] LUK'YANCHUK B,ZHELUDEV N I,MAIER S A,et al.. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials,2010,9(9):707-715. [77] DANI K M,KU Z,UPADHYA P C,et al.. Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters,2009,9(10):3565-3569. [78] NIKOLAENKO A E,PAPASIMAKIS N,ATMATZAKIS E,et al.. Nonlinear graphene metamaterial[J]. Appl. Phys. Lett.,2012,100(18):181109-181109-181103. [79] RAKICH P T,POPOVI,CACUTE M A,et al.. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials[J]. Nature Photonics,2007,1(11):658-665. [80] MARQUARDT F,GIRVIN S. Optomechanics(a brief review)[J]. Physics,2009,2:40. [81] BUTSCH A,KANG M,EUSER T,et al.. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[J]. Phys. Rev. Lett.,2012,109(18):183904. [82] ZHANG J,MACDONALD K,ZHELUDEV N. Optical gecko toe:optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces[J]. Physical Review B,2012,85(20):205123. [83] TANG C,WANG Q,LIU F,et al.. Optical forces in twisted split-ring-resonator dimer stereometamaterials[J]. Optics Express,2013,21(10):11783-11793. [84] ZHAO R,TASSIN P,KOSCHNY T,et al.. Optical forces in nanowire pairs and metamaterials[J]. Optics Express,2010,18(25):25665-25676. [85] GINIS V,TASSIN P,SOUKOULIS C M,et al.. Enhancing optical gradient forces with metamaterials[J]. Phys. Rev. Lett.,2013,110(5):057401. [86] VAN THOURHOUT D,ROELS J. Optomechanical device actuation through the optical gradient force[J]. Nature Photonics,2010,4(4):211-217. [87] LAPINE M,SHADRIVOV I V,POWELL D A,et al.. Magnetoelastic metamaterials[J]. Nature Materials,2011,11(1):30-33. [88] LAPINE M,SHADRIVOV I,KIVSHAR Y. Wide-band negative permeability of nonlinear metamaterials[J]. Scientific Eeports,2012,2:412. [89] SLOBOZHANYUK A P,LAPINE M,POWELL D A,et al.. Flexible helices for nonlinear metamaterials[J]. Advanced Materials,2013,25(25):3409-3412. [90] ZHANG J,MACDONALD K F,ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light Sci. Appl.,08/30/online 2013;2:e96. [91] MANIPATRUNI S,ROBINSON J T,LIPSON M. Optical nonreciprocity in optomechanical structures[J]. Phys. Rev. Lett.,2009,102(21):213903. [92] HAFEZI M,RABL P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express,2012,20(7):7672. [93] KANG M,BUTSCH A,RUSSELL P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre[J]. Nature Photonics,2011,5(9):549-553. [94] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. [95] NOVOSELOV K,GEIM A K,MOROZOV S,et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200. [96] LIU M,YIN X,ULIN-AVILA E,et al.. A graphene-based broadband optical modulator[J]. Nature,2011,474(7349):64-67. [97] PAPASIMAKIS N,LUO Z,SHEN Z X,et al.. Graphene in a photonic metamaterial[J]. Opt. Express,2010,18(8):8353-8359. [98] LEE S H,CHOI M,KIM T T,et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials,2012,11(11):936-941. [99] EMANI N K,CHUNG T F,NI X,et al.. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters,2012,12(10):5202-5206. [100] YAO Y,KATS M A,GENEVET P,et al.. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters,2013,13(3):1257-1264. [101] JABLAN M,BULJAN H,SOLJA?I? M. Plasmonics in graphene at infrared frequencies[J]. Physical review B,2009,80(24):245435. [102] CHEN J,BADIOLI M,ALONSO-GONZÁLEZ P,et al.. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature,2012,487(7405):77-81. [103] FEI Z,RODIN A,ANDREEV G,et al.. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature,2012,487(7405):82-85. [104] YAN H,LOW T,ZHU W,et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics,2013,7(5):394-399. [105] KOPPENS F H,CHANG D E,GARCIA DE ABAJO F J. Graphene plasmonics:a platform for strong light matter interactions[J]. Nano Letters,2011,11(8):3370-3377. [106] GRIGORENKO A,POLINI M,NOVOSELOV K. Graphene plasmonics[J]. Nature Photonics,2012,6(11):749-758. [107] YAN H,LI X,CHANDRA B,et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology,2012,7(5):330-334. [108] PAPASIMAKIS N,THONGRATTANASIRI S,ZHELUDEV N I,et al.. The magnetic response of graphene split-ring metamaterials[J]. Light:Science Applications,2013,2(7):e78. [109] JU L,GENG B,HORNG J,et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology,2011,6(10):630-634. [110] THONGRATTANASIRI S,KOPPENS F H,DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Phys. Rev. Lett.,2012,108(4):047401. [111] FANG Z,THONGRATTANASIRI S,SCHLATHER A,et al.. Gated tunability and hybridization of localized plasmons in nanostructured graphene[J]. ACS Nano,2013,7(3):2388-2395. [112] HAND T H,CUMMER S A. Controllable magnetic metamaterial using digitally addressable split-ring resonators[J]. Antennas and Wireless Propagation Letters,IEEE,2009,8:262-265. [113] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Appl. Phys. Lett.,2009,94(21):213511-213511-213513. [114] LIU X,STARR T,STARR A F,et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys. Rev. Lett.,2010,104(20):207403. [115] SUN J,TIMURDOGAN E,YAACOBI A,et al.. Large-scale nanophotonic phased array[J]. Nature,2013,493(7431):195-199. [116] HUANG L,CHEN X,BAI B,et al.. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science Applications,2013,2(3):e70. [117] LIN J,MUELLER J B,WANG Q,et al.. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science,2013,340(6130):331-334. [118] SUN S,HE Q,XIAO S,et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials,2012,11(5):426-431. [119] GRADY N K,HEYES J E,CHOWDHURY D R,et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304-1307. [120] BONACCORSO F,SUN Z,HASAN T,et al.. Graphene photonics and optoelectronics[J]. Nature Photonics,2010,4(9):611-622. [121] NOVOSELOV K,FAL V,COLOMBO L,et al.. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. [122] LEE S H,CHOI J,KIM H D,et al.. Ultrafast refractive index control of a terahertz graphene metamaterial[J]. Scientific Reports,2013,3:2135. [123] BAO Q,LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano,2012,6(5):3677-3694. [124] SIEGEL P H. Terahertz technology[J]. Microwave Theory and Techniques,IEEE Transactions on,2002,50(3):910-928. [125] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007,1(2):97-105.

  • [1] 林雨, 蒋春萍.  可调谐超构透镜的发展现状 . 中国光学, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043
    [2] 徐德刚, 朱先立, 贺奕焮, 王与烨, 姚建铨.  新型有机晶体及超宽带太赫兹辐射源研究进展 . 中国光学, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
    [3] Sviatoslav Igorevich GUSEV, Petr S DEMCHENKO, Olga P CHERKASOVA, Vyacheslav I FEDOROV, Mikhail K KHODZITSKY.  Influence of glucose concentration on blood optical properties in THz frequency range . 中国光学, 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182
    [4] Daniel GOMON, Egor SEDYKH, Sebastián RODRÍGUEZ, Tafur Monroy IDELFONSO, Kirill ZAITSEV, Anna VOZIANOVA, Mikhail KHODZITSKY.  Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications . 中国光学, 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047
    [5] 杨晶, 龚诚, 赵佳宇, 田浩琳, 孙陆, 陈平, 林列, 刘伟伟.  利用3D打印技术制备太赫兹器件 . 中国光学, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
    [6] 谭智勇, 万文坚, 黎华, 曹俊诚.  基于太赫兹量子级联激光器的实时成像研究进展 . 中国光学, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
    [7] 李婧, 张文, 缪巍, 史生才.  超高灵敏度太赫兹超导探测技术发展 . 中国光学, 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122
    [8] 秦华, 黄永丹, 孙建东, 张志鹏, 余耀, 李想, 孙云飞.  二维电子气等离激元太赫兹波器件 . 中国光学, 2017, 10(1): 51-67. doi: 10.3788/CO.20171001.0051
    [9] 石敬, 王新柯, 郑显华, 贺敬文, 王森, 谢振威, 崔烨, 叶佳声, 孙文峰, 冯胜飞, 韩鹏, 张岩.  太赫兹数字全息术的研究进展 . 中国光学, 2017, 10(1): 131-147. doi: 10.3788/CO.20171001.0131
    [10] 张磊, 刘硕, 崔铁军.  电磁编码超材料的理论与应用 . 中国光学, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
    [11] 胡伟东, 季金佳, 刘瑞婷, 王雯琦, LeoP.LIGTHART.  太赫兹大气遥感技术 . 中国光学, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656
    [12] 曹尚文, 周永江, 程海峰.  变换光学透镜天线研究进展 . 中国光学, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
    [13] 鄂轶文, 黄媛媛, 徐新龙, 汪力.  太赫兹偏振测量系统及其应用 . 中国光学, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
    [14] 潘学聪, 姚泽瀚, 徐新龙, 汪力.  太赫兹波段超材料的制作、设计及应用 . 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
    [15] 叶全意, 杨春.  光子学太赫兹源研究进展 . 中国光学, 2012, 5(1): 1-11. doi: 10.3788/CO.20120501.0001
    [16] 古新安, 朱韦臻, 罗志伟, ANDREEV Y M, LANSKII G V, SHAIDUKO A V, IZAAK T I, SVETLICHNYI V A, VAYTULEVICH E A, ZUEV V V.  掺碲硒化镓晶体的光学性能 . 中国光学, 2011, 4(6): 660-666.
    [17] Christian Helgert, Thomas Pertsch, Carsten Rockstuhl, Ekaterina PshenaySeverin, Christoph Menzel, ErnstBernhard Kley. et.al.  光学特异材料的设计 . 中国光学, 2010, 3(1): 1-10.
    [18] 蔡禾, 郭雪娇, 和挺, 潘锐, 熊伟, 沈京玲.  太赫兹技术及其应用研究进展 . 中国光学, 2010, 3(3): 209-222.
    [19] WEN Qi-ye, XIE Yun-song, ZHANG Huai-wu, YANG Qing-hui, LIU Bao-yuan.  太赫兹频域的强双带特异材料吸收体 . 中国光学, 2010, 3(1): 70-74.
    [20] 李宁, 唐勇, 李玉瑶, 耿似玉.  工作距离可调的激光显微操纵器光学系统设计 . 中国光学, 2009, 2(6): 557-560.
  • 加载中
计量
  • 文章访问数:  600
  • HTML全文浏览量:  79
  • PDF下载量:  1473
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-16
  • 修回日期:  2014-02-18
  • 刊出日期:  2014-05-25

可调太赫兹与光学超材料

doi: 10.3788/CO.20140703.0349
    基金项目:

    国家自然科学基金资助项目(No.11304389)

    作者简介:

    张检发(1985- ),男,江西萍乡人,博士,讲师,2013年于英国南安普顿大学获得博士学位,主要从事光学超材料、表面等离激元和石墨烯方面的研究。E-mail:jfzhang85@nudt.edu.cn

    通讯作者: 张检发
  • 中图分类号: O439;TN214

摘要: 本文对可调太赫兹与光学超材料的研究进展进行了综述,并对其发展趋势和应用前景进行了展望。可以预见,可调超材料将继续成为超材料研究中的热点课题,并将成为引领光学器件和光学系统变革的潜在技术途径,对光学和太赫兹技术的发展将产生深远的影响。

English Abstract

张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
引用本文: 张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
Citation: ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
参考文献 (1)

目录

    /

    返回文章
    返回