留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波段超材料的制作、设计及应用

潘学聪 姚泽瀚 徐新龙 汪力

潘学聪, 姚泽瀚, 徐新龙, 汪力. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
引用本文: 潘学聪, 姚泽瀚, 徐新龙, 汪力. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
Citation: PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283

太赫兹波段超材料的制作、设计及应用

doi: 10.3788/CO.20130603.0283
基金项目: 

国家自然科学基金资助项目(No.10834015;No.61077082);陕西省科技新星资助项目(No.2012KJXX-27);陕西省光电技术与功能材料省部共建国家重点实验室培育基地基金资助项目(No.ZS12018)

详细信息
    作者简介:

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    通讯作者: 汪力
  • 中图分类号: O441;TB34

Fabrication, design and application of THz metamaterials

  • 摘要: 本文从制作方法、结构设计和材料选择几方面综述了超材料在太赫兹波段的电磁响应特性和潜在应用。首先,介绍了获得不同维度、具有特异电磁响应以及结构可调超材料的各种微加工制作方法,进而分析和讨论了超材料的电磁响应特性。文中指出,结构设计可以控制超材料的电磁响应特性,如各向异性、双各向异性、偏振调制、多频响应、宽带响应、不对称透射、旋光性和超吸收等。超材料的电磁响应依赖于周围微环境的介电性质,因而可用于制作对环境敏感的传感器件。此外,电光、磁光、相变、温度敏感等功能材料的引入可以获得光场、电场、磁场、温度等主动控制的太赫兹功能器件。最后,简单介绍了超材料在太赫兹波段进一步发展所面临的机遇和挑战。
  • [1] CAI W S,SHALAEV V M. Optical Metamaterials:Fundamentals and Applications[M]. New York:Springer-Verlag,2010. [2] LEE Y S. Principles of Terahertz Science and Technology[M]. New York:Springer-Verlag,2009. [3] 叶全意,杨春. 光子学太赫兹源研究进展[J]. 中国光学,2012,5(1):1-11. YE Q Y,YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics,2012,5(1):1-11. (in Chinese) [4] 张会,张卫宇,徐旺,等. THz波段光子晶体带隙影响因素研究[J]. 发光学报,2012,33(8): 883-887. ZHANG H,ZHANG W Y,XU W,et al.. Study on the influencing factors of photonic crystal's band gaps in THz waveband[J]. Chinese J. Luminescence,2012,33(8):883-887.(in Chinese) [5] 罗志伟,古新安,朱韦臻,等. 掺硫硒化镓晶体在太赫兹波段的光学特性[J]. 光学 精密工程,2011,19(2):354-359.LUO ZH W,GU X A,ZHU W CH,et al.. Optical properties of GaSe∶S crystals in terahertz frequency range[J]. Opt. Precision Eng.,2011,19(2):354-359. (in Chinese) [6] PENDRY J B,HOLDEN A J,STEWART W J,et al.. Extremely low frequency plasmons in metallic mesostructures[J]. Phys. Rev. Lett.,1996,76(25):4773-4776. [7] PENDRY J B,HOLDEN A J,ROBBINS D J,et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans. Microw. Theory Tech.,1999,47(11):2075-2084. [8] XIA X X,SUN Y M,YANG H F,et al.. The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region[J]. J. Appl. Phys.,2008,104(3):033505. [9] CHIAM S Y,SINGH R,ZHANG W L,et al.. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Appl. Phys. Lett.,2010,97(19):191906. [10] SINGH R,AZAD A K,O'HARA J F,et al.. Effect of metal permittivity on resonant properties of terahertz metamaterials[J]. Opt. Lett.,2008,33(13): 1506-1508. [11] SINGH R,SMIRNOVA E,TAYLOR A J,et al.. Optically thin terahertz metamaterials[J]. Opt. Express,2008,16(9):6537-6543. [12] SUN Y M,XIA X X,FENG H,et al.. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Appl. Phys. Lett.,2008,92(22):221101. [13] TAO H,STRIKWERDA A C,LIU M K,et al.. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Appl. Phys. Lett.,2010,97(26):261909. [14] WITHAYACHUMNANKUL W,LIN H,SERITA K,et al.. Sub-diffraction thin-film sensing with planar terahertz metamaterials[J]. Opt. Express,2012,20(3):3345-3352. [15] WU X J,QUAN B G,PAN X C,et al.. Alkanethiol-functionalized terahertz metamaterial as label-free,highly-sensitive and specific biosensor[J]. Biosens. Bioelectron.,2013,42:626-631. [16] PERALTA X G,SMIRNOVA E I,AZAD A K,et al.. Metamaterials for THz polarimetric devices[J]. Opt. Express,2009,17(2):773-783. [17] PADILLA W J,TAYLOR A J,HIGHSTRETE C,et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys. Rev. Lett.,2006,96(10):107401. [18] GU J Q,SINGH R,AZAD A K,et al.. An active hybrid plasmonic metamaterial[J]. Opt. Mater. Express,2012,2(1):31-37. [19] CHATZAKIS I,LUO L,WANG J,et al.. Reversible modulation and ultrafast dynamics of terahertz resonances in strongly photoexcited metamaterials[J]. Phys. Rev. B,2012,86(12):125110. [20] SHEN X P,CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J]. J. Opt.,2012,14(11):114012. [21] KANDA N,KONISHI K,KUWATA-GONOKAMI M. Dynamics of photo-induced terahertz optical activity in metal chiral gratings[J]. Opt. Lett.,2012,37(17):3510-3512. [22] GU J Q,SINGH R,LIU X J,et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat. Commun.,2012,3:1151. [23] CHEN H T,PADILLA W J,ZIDE J M O,et al.. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600. [24] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Appl. Phys. Lett.,2009,94(21):213511. [25] WU J B,JIN B B,XUE Y H,et al.. Tuning of superconducting niobium nitride terahertz metamaterials[J]. Opt. Express,2011,19(13):12021-12026. [26] LIU M,HWANG H Y,TAO H,et al.. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature,2012,487(7407):345-348. [27] GOLDFLAM M D,DRISCOLL T,CHAPLER B,et al.. Reconfigurable gradient index using VO2 memory metamaterials[J]. Appl. Phys. Lett.,2011,99(4):044103. [28] TAO H,STRIKWERDA A,FAN K,et al.. Reconfigurable Terahertz metamaterials[J]. Phys. Rev. Lett.,2009,103(14):147401. [29] NěMEC H,KU?EL P,KADLEC F,et al.. Tunable terahertz metamaterials with negative permeability[J]. Phys. Rev. B,2009,79(24):241108. [30] SINGH R,AZAD A K,JIA Q X,et al.. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Opt. Lett.,2011,36(7):1230-1232. [31] YUAN Y,BINGHAM C,TYLER T,et al.. Dual-band planar electric metamaterial in the terahertz regime[J]. Opt. Express,2008,16(13):9746-9752. [32] ZHANG Y X,QIAO S,HUANG W,et al.. Asymmetric single-particle triple-resonant metamaterial in terahertz band[J]. Appl. Phys. Lett.,2011,99(7):073111. [33] MA Y,CHEN Q,KHALID A,et al.. Terahertz dual-band resonator on silicon[J]. Opt. Lett.,2010,35(4):469-471. [34] HUSSAIN S,MIN WOO J,JANG J-H. Dual-band terahertz metamaterials based on nested split ring resonators[J]. Appl. Phys. Lett.,2012,101(9):091103. [35] CHOWDHURY D R,SINGH R,REITEN M,et al.. A broadband planar terahertz metamaterial with nested structure[J]. Opt. Express,2011,19(17):15817-15823. [36] HUANG L,CHOWDHURY D R,RAMANI S,et al.. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Opt. Lett.,2012,37(2):154-156. [37] HAN N R,CHEN Z C,LIM C S,et al.. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Opt. Express,2011,19(8):6990-6998. [38] HU C,LI X,FENG Q,et al.. Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency[J]. J. Appl. Phys.,2010,108(5):053103. [39] GRANT J,MA Y,SAHA S,et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Opt. Lett.,2011,36(17):3476-3478. [40] SHEN X,YANG Y,ZANG Y,et al.. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation[J]. Appl. Phys. Lett.,2012,101(15):154102. [41] SINGH R,ROCKSTUHL C,LEDERER F,et al.. Coupling between a dark and a bright eigenmode in a terahertz metamaterial[J]. Phys. Rev. B,2009,79(8):085111. [42] CHIAM S-Y,SINGH R,ROCKSTUHL C,et al.. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Phys. Rev. B,2009,80(15):153103. [43] LIU X J,GU J Q,SINGH R,et al.. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Appl. Phys. Lett.,2012,100(13):131101. [44] LI Z Y,MA Y F,HUANG R,et al.. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Opt. Express,2011,19(9):8912-8919. [45] ZHU W M,LIU A Q,BOUROUINA T,et al.. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy[J]. Nat. Commun.,2012,3:1274. [46] LIU A Q,ZHU W M,TSAI D P,et al.. Micromachined tunable metamaterials:a review[J]. J. Opt.,2012,14(11):114009. [47] FU Y H,LIU A Q,ZHU W M,et al.. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv. Funct. Mater.,2011,21(18):3589-3594. [48] 方安乐,戴小玉,凌晓辉,等. 太赫兹超常材料及应用[J]. 激光与光电子学进展,2010,47(5):051601. FANG A L,DAI X Y,LING X H,et al.. Metamaterials at terahertz and their applications[J]. Laser & Optoelectronics Progress,2010,47(5):051601. (in Chinese) [49] 丁佩,梁二军. 太赫兹波段电磁超介质的应用及研究进展[J]. 激光与光电子学进展,2011,48(7):071602. DING P,LIANG E J. Research progress of metamaterials for terahertz applications[J]. Laser & Optoelectronics Progress,2011,48(7):071602. (in Chinese) [50] 何明霞,李净延,刘冠林. 太赫兹可控功能器件的研究进展[J]. 电子测量与仪器学报,2012,26(7):567-576. HE M X,LI J Y,LIU G L. Progress of terahertz active control functional devices[J]. J. Electronic Measurement and Instrument,2012,26(7):567-576. (in Chinese) [51] TAO H,PADILLA W J,ZHANG X,et al.. Recent progress in electromagnetic metamaterial devices for Terahertz applications[J]. IEEE J. Sel. Top. Quant,2011,17(1):92-101. [52] WITHAYACHUMNANKUL W,ABBOTT D. Metamaterials in the Terahertz regime[J]. IEEE Photonics J.,2009,1(2):99-118. [53] CHIAM S-Y,SINGH R,GU J,et al.. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Appl. Phys. Lett.,2009,94(6):064102. [54] WALTHER M,ORTNER A,MEIER H,et al.. Terahertz metamaterials fabricated by inkjet printing[J]. Appl. Phys. Lett.,2009,95(25):251107. [55] KIM H,MELINGER J S,KHACHATRIAN A,et al.. Fabrication of terahertz metamaterials by laser printing[J]. Opt. Lett.,2010,35(23):4039-4041. [56] MIYAMARU F,KUBODA S,TAIMA K,et al.. Three-dimensional bulk metamaterials operating in the terahertz range[J]. Appl. Phys. Lett.,2010,96(8):081105. [57] ZAICHUN C,RAHMANI M,YANDONG G,et al.. Realization of variable three-dimensional Terahertz metamaterial tubes for passive resonance tunability[J]. Adv. Mater.,2012,24(23):OP143-OP147. [58] FAN K B,STRIKWERDA A C,TAO H,et al.. Stand-up magnetic metamaterials at terahertz frequencies[J]. Opt. Express,2011,19(13):12619-12627. [59] ZHANG S,ZHOU J F,PARK Y S,et al.. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nat. Commun.,2012,3:942. [60] ARISMAR CERQUEIRA S. Recent progress and novel applications of photonic crystal fibers[J]. Rep. Prog. Phys.,2010,73(2):024401. [61] TUNIZ A,POPE B,WANG A,et al.. Spatial dispersion in three-dimensional drawn magnetic metamaterials[J]. Opt. Express,2012,20(11):11924-11935. [62] OZBEY B,AKTAS O. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers[J]. Opt. Express,2011,19(7):5741-5752. [63] KAFESAKI M,SHEN N H,TZORTZAKIS S,et al.. Optically switchable and tunable terahertz metamaterials through photoconductivity[J]. J. Opt.,2012,14(11):114008. [64] PADILLA W,ARONSSON M,HIGHSTRETE C,et al.. Electrically resonant terahertz metamaterials:theoretical and experimental investigations[J]. Phys. Rev. B,2007,75(4):041102. [65] YEN T J. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496. [66] MARQUES R,MEDINA F,RAFII-EL-IDRISSI R. Role of bianisotropy in negative permeability and left-handed metamaterials[J]. Phys. Rev. B,2002,65(14):144440. [67] XU X L,QUAN B G,GU C Z,et al.. Bianisotropic response of microfabricated metamaterials in the terahertz region[J]. J. Opt. Soc. Am. B,2006,23(6):1174-1180. [68] DRISCOLL T,ANDREEV G O,BASOV D N,et al.. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy[J]. Appl. Phys. Lett.,2007,90(9):092508. [69] ZHU Y H,VEGESNA S,KURYATKOV V,et al.. Terahertz bandpass filters using double-stacked metamaterial layers[J]. Opt. Lett.,2012,37(3):296-298. [70] REITEN M T,ROY CHOWDHURY D,ZHOU J,et al.. Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials[J]. Appl. Phys. Lett.,2011,98(13):131105. [71] HUANG C,FENG Y J,ZHAO J M,et al.. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures[J]. Phys. Rev. B,2012,85(19):195131. [72] KENANAKIS G,ZHAO R,STAVRINIDIS A,et al.. Flexible chiral metamaterials in the terahertz regime:a comparative study of various designs[J]. Opt. Mater. Express,2012,2(12):1702-1712. [73] ZHAO Y,BELKIN M A,AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nat. Commun.,2012,3:870. [74] MENZEL C,ROCKSTUHL C,LEDERER F. Advanced Jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A,2010,82(5):053811. [75] SINGH R,PLUM E,MENZEL C,et al.. Terahertz metamaterial with asymmetric transmission[J]. Phys. Rev. B,2009,80(15):153104. [76] SINGH R,PLUM E,ZHANG W L,et al.. Highly tunable optical activity in planar achiral terahertz metamaterials [J]. Opt. Express,2010,18(13): 13425-13430. [77] WOO J H,CHOI E,KANG B,et al.. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube[J]. Opt. Express,2012,20(14):15440-15451. [78] REINHARD B,SCHMITT K M,WOLLRAB V,et al.. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range[J]. Appl. Phys. Lett.,2012,100(22):221101. [79] VENDIK O G,ODIT M A,KHOLODNYAK D V,et al.. Tunable metamaterials for controlling THz radiation[J]. IEEE Transactions on Terahertz Science and Technology,2012,2(5):538-549. [80] ZHOU Q L,SHI Y L,WANG A H,et al.. Ultrafast optical modulation of terahertz metamaterials[J]. J. Opt.,2011,13(12):125102. [81] LI W,KUANG D F,FAN F,et al.. Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure[J]. Appl. Optics.,2012,51(29):7098-7102. [82] ZHELUDEV N I,KIVSHAR Y S. From metamaterials to metadevices[J]. Nat. Mater.,2012,11(11):917-924.
  • [1] 朱晓秀, 葛咏, 李建军, 赵跃进, 邹炳锁, 钟海政.  量子点增强硅基探测成像器件的研究进展 . 中国光学, 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062
    [2] 梁宛玉, 许洁, 戴放, 常维静, 那启跃.  固态微光实时偏振成像集成技术 . 中国光学, 2020, 13(6): 1-9. doi: 10.37188/CO.2020-0086
    [3] 朱绪丹, 张荣君, 郑玉祥, 王松有, 陈良尧.  椭圆偏振光谱测量技术及其在薄膜材料研究中的应用 . 中国光学, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195
    [4] 曹佃生, 林冠宇, 杨小虎, 张子辉, 闻宝朋.  紫外双光栅光谱仪结构设计与波长精度分析 . 中国光学, 2018, 11(2): 219-230. doi: 10.3788/CO.20181102.0219
    [5] 曹尚文, 周永江, 程海峰.  变换光学透镜天线研究进展 . 中国光学, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
    [6] 陈勰宇, 田震.  石墨烯太赫兹波动态调制的研究进展 . 中国光学, 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086
    [7] 鄂轶文, 黄媛媛, 徐新龙, 汪力.  太赫兹偏振测量系统及其应用 . 中国光学, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
    [8] 王东, 颜昌翔, 张军强.  光谱偏振调制器的高精度装调方法 . 中国光学, 2016, 9(1): 144-154. doi: 10.3788/CO.20160901.0144
    [9] 张军强, 薛闯, 高志良, 颜昌翔.  云与气溶胶光学遥感仪器发展现状及趋势 . 中国光学, 2015, 8(5): 679-698. doi: 10.3788/CO.20150805.0699
    [10] 张检发, 袁晓东, 秦石乔.  可调太赫兹与光学超材料 . 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
    [11] 陈伟, 丁亚林, 惠守文, 许永森.  碳化硅扫描反射镜支撑结构设计 . 中国光学, 2012, 5(2): 161-166. doi: 10.3788/CO.20120502.0161
    [12] 王智.  基于碳纤维复合材料的月基极紫外相机照准架结构设计 . 中国光学, 2012, 5(6): 590-595. doi: 10.3788/CO.20120506.0590
    [13] 孙振, 巩岩.  光刻投影物镜可变光阑的结构设计与分析 . 中国光学, 2012, 5(4): 401-406. doi: 10.3788/CO.20120504.0401
    [14] 梁彪, 刘伟.  二氧化碳探测仪典型透镜支撑结构的设计及分析 . 中国光学, 2011, 4(4): 388-396.
    [15] 孙景旭, 孙斌, 张星祥, 任建伟, 陈长征, 任建岳.  车载红外探测设备的光机结构设计 . 中国光学, 2010, 3(4): 397-403.
    [16] 贾庆莲, 王春霞.  连续变焦镜头焦距输出结构的设计 . 中国光学, 2010, 3(6): 649-652.
    [17] 刘伟.  小型Offner凸光栅光谱成像系统的结构设计及分析 . 中国光学, 2010, 3(2): 157-163.
    [18] 余飞, 吴清文, 王宝石, 邹艳, 曲利新, 黄涛, 郑飞.  振动疲劳寿命分析在主镜支撑结构设计中的应用 . 中国光学, 2009, 2(6): 495-501.
    [19] 张军强, 颜昌翔.  碳/环氧复合材料在航天有效载荷支撑结构中的应用 . 中国光学, 2009, 2(2): 79-84.
    [20] 沈兆国, 张萍.  一种掺钕光纤激光器与倍频技术实现的数值模拟 . 中国光学, 2008, 1(1): 105-111.
  • 加载中
计量
  • 文章访问数:  2874
  • HTML全文浏览量:  47
  • PDF下载量:  999
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-17
  • 修回日期:  2013-04-15
  • 刊出日期:  2013-06-10

太赫兹波段超材料的制作、设计及应用

doi: 10.3788/CO.20130603.0283
    基金项目:

    国家自然科学基金资助项目(No.10834015;No.61077082);陕西省科技新星资助项目(No.2012KJXX-27);陕西省光电技术与功能材料省部共建国家重点实验室培育基地基金资助项目(No.ZS12018)

    作者简介:

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    潘学聪(1983-),女,河北肃宁人,博士研究生,2006年于河北大学获得学士学位,主要从事超材料在太赫兹波段电磁响应的研究。E-mail:panxuecong06@mails.gucas.ac.cn;姚泽瀚(1990-),男,广州汕头人,硕士研究生,2012年于广东工业大学获得学士学位,主要从事超材料的设计、制备及应用等方面的研究。E-mail:bluenceyezi@gmail.com;徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn;汪力(1956-),男,安徽芜湖人,博士,研究员,博士生导师,1982年于安徽师范大学获得学士学位,1989年于中国科学院物理研究所获得博士学位,主要从事激光物理、太赫兹波与物质相互作用等方面的研究。E-mail:wangli@aphy.iphy.ac.cn

    通讯作者: 汪力
  • 中图分类号: O441;TB34

摘要: 本文从制作方法、结构设计和材料选择几方面综述了超材料在太赫兹波段的电磁响应特性和潜在应用。首先,介绍了获得不同维度、具有特异电磁响应以及结构可调超材料的各种微加工制作方法,进而分析和讨论了超材料的电磁响应特性。文中指出,结构设计可以控制超材料的电磁响应特性,如各向异性、双各向异性、偏振调制、多频响应、宽带响应、不对称透射、旋光性和超吸收等。超材料的电磁响应依赖于周围微环境的介电性质,因而可用于制作对环境敏感的传感器件。此外,电光、磁光、相变、温度敏感等功能材料的引入可以获得光场、电场、磁场、温度等主动控制的太赫兹功能器件。最后,简单介绍了超材料在太赫兹波段进一步发展所面临的机遇和挑战。

English Abstract

潘学聪, 姚泽瀚, 徐新龙, 汪力. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
引用本文: 潘学聪, 姚泽瀚, 徐新龙, 汪力. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
Citation: PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
参考文献 (1)

目录

    /

    返回文章
    返回